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A A Microfoundation of the Theoretical Model

Here, we provide a microfoundation for the reduced-form model we outlined in the main

text. Our model has two periods. In the first period, the duopolists undertake R&D invest-

ment, while in the second period, production takes place in a linear duopoly under product

substitutability.

A.1 The Imperfect Product Substitutability Cournot Stage Game

In the second period, firms set their output level and, subsequently, prices adjust so that

demand equals supply. Each firm i has a marginal production cost κi and faces demand

described by the inverse demand function

pi = bi − θqj − γqi,

where pi denotes the price, qi denotes the output of firm i, bi represents the consumers’ highest

willingness to pay for the product of firm i (will be referred to as a quality parameter), qj is

the rival’s output, and θ is a parameter that captures the substitutability of the two goods

in the preferences of the consumers. We assume γ > 0 and bi > 0, γ > θ ≥ 0.1

Denote ni ≡ bi − κi and refer to it as cost-adjusted quality. To fix ideas, let us treat firm

i = 1 to be the one that is (weakly) more technologicaly advantaged, i.e. n1 ≥ n2. Assume

that

bi > κi, (1)

which ensures that ni > 0 for all i.

Firms choose simultaneously and independently their output level to maximize their

second-period profits. We refer to these profits as the duopolists’ economic rents. Firm i’s

best-response function is

qi = max{bi − κi − θqj
2γ

, 0}, i = 1, 2. (2)

Denote with star the (pure strategy) Nash equilibrium values. The Nash equilibrium is

given by the solution to the system of the above best-response functions. The equilibrium

1This environment emerges from price-taking maximization of a linear-quadratic utility function of a
numeraire good and the goods produced by the two firms in question, together with the assumption that
whenever a firm’s good faces zero demand, the price that clears the market is the lowest price from all
possible prices that are compatible with zero demand for this good.
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economic rents attained by duopolist i equal

Π∗i = (bi − θq∗j − γq∗i − κi)q∗i = γ (q∗i )
2

where the second equality follows from using the best-response function of firm i. It follows

that if θ ≤ 2γ n2

n1
, then, the Nash equilibrium is given by qi = q∗i , where

q∗i =
2γ(bi − κi)− θ(bj − κj)

4γ2 − θ2
,

with q∗1 − q∗2 = (2γ+θ)(n1−n2)
4γ2−θ2 ≥ 0. If, on the other hand, 2γ n2

n1
< θ < γ (and hence n1 > n2),

then, the Nash equilibrium is given by q∗2 = 0, q∗1 = n1

2γ
> n2

θ
, where the less (technologically)

advantaged firm is at a corner solution. In any case, the more advantaged firm earns higher

economic rents.

A.2 R&D and Cost-Adjusted Qualities

Observe from above that both output levels (and hence economic rents) depend on both n1

and n2.

We postulate that the difference between n1 and n2 depends on the outcome of the

non-cooperative R&D investment of the firms in the first stage of their interaction.

Specifically, we assume that

ni = n+ ki,

for all i = 1, 2, where n > 1 is an exogenous parameter which fixes, in effect, the average

cost-adjusted quality in the industry, and

k ∈ {−1, 0, 1},

where ki = 0 for all i = 1, 2 in a levelled (in the second stage) industry, whereas for the case of

an unlevelled (in the second stage) industry, k1 = 1 and k2 = −1. We therefore have that in

a levelled industry n1 = n2 = n, while in an unlevelled industry n1 = n+1 > n > n−1 = n2.
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A.3 Investing for Improvements of Cost-Adjusted Quality

In the first period, firms invest towards gaining an advantage in terms of their cost-adjusted

quality (and, thereby, economic rents) vis-a-vis their competitor. In our setup, as described

above, to gain such an advantage a firm needs to improve the cost-adjusted quality by one

level so that, depending on the R&D outcomes, either catches up with the competitor or

becomes the leader.

The probability of improving the cost-adjusted quality by one unit (referred to as “re-

search capacity”) is set to be pi = f(ai), where f(·) is an increasing and (weakly) concave

function of investment ai ∈ [0, a] with f(0) = 0 and f(a) = 1. Let also the cost of R&D

investment be given by a function Ĉ(ai, K), such that Ĉ(·, K) is increasing and convex and

Ĉ(ai, ·) is decreasing for any ai with Ĉ(0, K) = 0 and lima→a Ĉ(a,K) =∞, for any K.

Observe that in order to implement a research capacity pi, firm i needs to invest ai =

f
′−1(pi). We thus have that the cost from implementing a research capacity pi is

C(pi, K) = Ĉ(f
′−1(pi), K).

As can easily be verified, this function is such that C(., K) is increasing and convex and

C(ai, ·) is decreasing for any ai, with C(0, K) = 0 and limp→1C(p,K) =∞, for any K, as it

is assumed in the reduced-form model.

Finally, note that using pi = ai/100 and Ĉ(ai, K) = 1
K

ai
100−ai gives the cost function

C(pi, K) used in the experiments.

A.4 Product Substitutability and Economic Rents

Recall from the discussion of the Cournot duopoly earlier that if θ ≤ 2γ n−1
n+1

, then, firm i

earns economic rents

Π∗i = γ

[
2γni − θnj
4γ2 − θ2

]2

.

Therefore, in a neck-and-neck industry, where n1 = n2 = n, we have that each firm earns

economic rents

Π∗0 ≡ γ

[
n

2γ + θ

]2

.

Moreover, in an unlevelled industry, where n1 > n > n2, we have

Π∗1 = γ

[
2γn1 − θn2

4γ2 − θ2

]2
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and

Π∗2 = γ

[
2γn2 − θn1

4γ2 − θ2

]2

.

In terms of the notation used in the reduced-form model, we have πh = Π∗1, πl = Π∗2 and

πs = Π∗0. Below, we derive the conditions on γ, θ, n that will ensure that these economic

rents satisfy the required properties in our reduced-form model.2

A.4.1 Meeting Conditions on Economic Rents

Given that non-cooperative economic rents are (as we have seen earlier) equal to γ times

output squared, we have that the required conditions

Π∗2 < Π∗0

Π∗1 > Π∗0

∂[Π∗1 − Π∗0]

∂θ
> 0

∂[Π∗0 − Π∗2]

∂θ
< 0

are equivalent to (
2γn2 − θn1

4γ2 − θ2

)2

<

(
(2γ − θ)n
4γ2 − θ2

)2

(
2γn1 − θn2

4γ2 − θ2

)2

>

(
(2γ − θ)n
4γ2 − θ2

)2

∂[
(

2γn1−θn2

4γ2−θ2

)2

−
(

(2γ−θ)n
4γ2−θ2

)2

]

∂θ
> 0

∂[
(

(2γ−θ)n
4γ2−θ2

)2

−
(

2γn2−θn1

4γ2−θ2

)2

]

∂θ
< 0.

Using that
2γn1 − θn2

4γ2 − θ2
=

(2γ + θ) + (2γ − θ)n
4γ2 − θ2

2One can easily see that the required properties in our reduced-form model are also satisfied by the
economics rents when θ > 2γ n1

n2
. The reason is that Π∗

0 is clearly decreasing in θ and, in this environment,
we have Π∗

2 = 0 and Π∗
1 = n1

2γ , which is independent of θ.
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2γn2 − θn1

4γ2 − θ2
=
−(2γ + θ) + (2γ − θ)n

4γ2 − θ2

we have that we need γ, θ, n to be such that(
(2γ − θ)n
4γ2 − θ2

)2

−
(

2γn2 − θn1

4γ2 − θ2

)2

= [
n

2γ + θ
−(

n

2γ + θ
− 1

2γ − θ
)][

n

2γ + θ
+(

n

2γ + θ
− 1

2γ − θ
)] =

1

2γ − θ
[

2n

2γ + θ
− 1

2γ − θ
] > 0

2γn1 − θn2

4γ2 − θ2
− (2γ − θ)n

4γ2 − θ2
=

1

2γ − θ
> 0

∂[
(

2γn1−θn2

4γ2−θ2

)2

−
(

(2γ−θ)n
4γ2−θ2

)2

]

∂θ
=
∂[
(

1
2γ−θ

)2

+ 2
(

1
2γ−θ

)(
n

2γ+θ

)
]

∂θ
=
∂[
(

1
2γ−θ

)2

+ 2
(

n
(2γ)2−θ2

)
]

∂θ
> 0

∂[
(

(2γ−θ)n
4γ2−θ2

)2

−
(

2γn2−θn1

4γ2−θ2

)2

]

∂θ
=
∂[−

(
1

2γ−θ

)2

+ 2
(

1
2γ−θ

)(
n

2γ+θ

)
]

∂θ
=
∂[−

(
1

2γ−θ

)2

+ 2
(

n
(2γ)2−θ2

)
]

∂θ
< 0.

It follows directly that π∗h > π∗l and
∂[π∗h−π

∗
l ]

∂θ
> 0 are satisfied for any γ > 0, θ < γ, n > 0.

Turning to the remaining conditions, we clearly have that Π∗2 < Π∗0 if and only if

2(2γ − θ)n > 2γ + θ,

which can be re-written as
γ

θ
>

(1 + 2n)

2(2n− 1)
. (3)

Clearly, given n > 1, γ > θ the above is satisfied if 1 + 2n ≤ 2(2n − 1); that is, if n ≥ 3/2,

which is feasible. To derive a condition that ensures that
∂[Π∗0−Π∗2]

∂θ
< 0, note that

∂[−
(

1
2γ−θ

)2

+ 2
(

n
(2γ)2−θ2

)
]

∂θ
= −2

(
1

2γ − θ

)3

+ 4nθ

(
1

(2γ)2 − θ2

)2

=

−2

(
1

2γ − θ

)2
{

1

2γ − θ
− 2nθ

(
1

2γ + θ

)2
}
.
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This is negative if θ = 0. For when θ > 0, we need

n <
(2γ + θ)2

2θ (2γ − θ)
. (4)

Note that the right-hand side goes to infinity as θ → 0+, while it equals 9/2 when θ → γ−.

Therefore, by continuity, there is a range of values for 0 < θ < γ for which the above

condition is satisfied for any given n ≥ 3/2 (which ensures the previous condition).

Finally, notice that Π∗1 −Π∗0 ≥ Π∗0 −Π∗2, in which case (6) in the main text holds for any

convex cost function, if (
2γn1 − θn2

4γ2 − θ2

)2

−
(

(2γ − θ)n
4γ2 − θ2

)2

≥

(
(2γ − θ)n
4γ2 − θ2

)2

−
(

2γn2 − θn1

4γ2 − θ2

)2

.

This can be rewritten as
1

2γ − θ
[

2n

2γ + θ
+

1

2γ − θ
] ≥

1

2γ − θ
[

2n

2γ + θ
− 1

2γ − θ
]

which is clearly true for γ > θ.

For our experiments, we choose the values n = 2 and γ = 1. For these values, and

θ ∈ {0.1, 0.2, 0.5, 0.6}, we have that n > 3/2 and equation (4) is satisfied, and πh, πl, πs are

as in Table 1 in the main text.
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B Arbitrary Number of Steps in the Technology Lad-

der

Note that the strategic environment in a levelled industry is independent of the number of

steps; thus, the analysis and results stay the same. In what follows, we restrict attention to

an unlevelled industry. We remind the reader here that in an unlevelled industry, we do not

find any novel results when adding R&D productivity to the nexus between competition and

innovation.

Let σ = 1, ..., S denote the technology gap (i.e. the number of the steps in the technology

ladder) between the leader and the laggard, where S ≥ 1 is a natural number (finite or

infinite). Let πl(σ) be the rents of the laggard when the technology gap with the leader

is equal to σ steps, and πh(σ) be the rents of the leader when the technology gap with the

laggard is equal to σ steps, with σ = 1, ..., S. Let us also use the convention πl(S+1) = πl(S)

and πh(S + 1) = πh(S), and define πs ≡ πl(0) ≡ πh(0). As in our basic model, πl(σ), πh(σ)

and πs are functions of θ, and we refrain from writing explicitly this dependence to simplify

notation.

We assume that πl(·) is a (weakly) decreasing and convex function, whereas πl(·) is a

(weakly) increasing and concave function; that is:

0 ≤ πl(σ)− πl(σ + 1) ≤ πl(σ − 1)− πl(σ)

and

πh(σ)− πh(σ − 1) ≥ πh(σ + 1)− πh(σ) ≥ 0,

for all σ = 2, .., S − 1.

The remaining assumptions are the direct analogues of the ones in our basic model (where

πl(σ + 1) = πl(1) ≡ πl and πh(σ + 1) = πh(1) ≡ πh for all σ = 1, ..., S). In particular, we

assume that πh(S) is finite, and that

πl(1) < πs < πh(1),

and so πl(σ) < πs < πh(σ) for all σ = 1, ..., S.

Finally, we assume that
∂[πh(σ)− πh(σ − 1)]

∂θ
> 0 (5)
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and
∂[πl(σ − 1)− πl(σ)]

∂θ
< 0 (6)

for all σ = 1, .., S; that is, the function πh(·) becomes steeper and the difference πh(1) − πs
becomes larger, while the function πl(·) becomes flatter and the difference πs−πl(1) becomes

smaller as θ increases. It turns out that with these assumptions the main message of our

analysis of the unlevelled industry is still valid: more competition causes the laggard to

reduce R&D investment independently of the level of R&D productivity. We show this next.

To fix ideas, suppose that firm i = 2 is the laggard and that firm i = 1 is the leader

with a technology gap of σ = 1, ..., S steps at the time of R&D investment. The investment

problem of the laggard is to maximize with respect to p2:

(1− p2) [p∗1πl(σ + 1) + (1− p∗1)πl(σ)] + p2 [p∗1πl(σ) + (1− p∗1)πl(σ − 1)]− C(p2, K) =

[p∗1πl(σ + 1) + (1− p∗1)πl(σ)] +

p2{p∗1[πl(σ)− πl(σ + 1)] + (1− p∗1)[πl(σ − 1)− πl(σ)]} − c(p2)

K
.

Taking the first-order condition with respect to p2, we have at an interior solution (i.e.

when p∗2 > 0) that:

K{p∗1[πl(σ)− πl(σ + 1)] + (1− p∗1)[πl(σ − 1)− πl(σ)]} = c′(p∗2). (7)

Note that in the case of zero investment by the laggard (i.e. when p∗2 = 0), the equality is

replaced with a “lower than or equal to” inequality.

The problem of the leader, in turn, is to maximize with respect to p1:

(1− p1)[p∗2πh(σ − 1) + (1− p∗2)πh(σ)] + p1[p∗2πh(σ) + (1− p∗2)πh(σ + 1)]− C(p1, K) =

[p∗2πh(σ − 1) + (1− p∗2)πh(σ)]+

p1{p∗2[πh(σ)− πh(σ − 1)] + (1− p∗2)[πh(σ + 1)− πh(σ)]} − c(p1)

K
.

Taking the first-order condition with respect to p1, we have at an interior solution (i.e.

when p∗1 > 0) that

K{p∗2[πh(σ)− πh(σ − 1)] + (1− p∗2)[πh(σ + 1)− πh(σ)]} = c′(p∗1). (8)

Note that in the case of zero investment by the leader (i.e. when p∗1 = 0), the equality is
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replaced with a “lower than or equal to” inequality.

As with the basic model, hereafter, we restrict attention to the (more interesting) case

where there is strictly positive investment from the laggard in the equilibrium. To start

with, we observe that if p∗1 = 0, then, the laggard’s R&D investment decreases with product

substitutability independently of R&D productivity. To see this, note that the above first-

order condition of the laggard becomes

K[πl(σ − 1)− πl(σ)] = c′(p∗2)

and observe that the left-hand side is decreasing in θ given our assumptions above.

Turning to the case where both firms invest, to find the effect of θ on the equilibrium

research capacities, we need to use the Implicit Function Theorem. So, dropping the asterisks

for notational simplicity, and using the two first-order conditions of the laggard and the leader

(7) and (8), we have that

[
−c′′(p1) K{[πh(σ)− πh(σ − 1)]− [πh(σ + 1)− πh(σ)]}

K{[πl(σ)− πl(σ + 1)]− [πl(σ − 1)− πl(σ)]} −c′′(p2)

]
×

[
∂p1/∂θ

∂p2/∂θ

]
=

[
−K{p2

∂[πh(σ)−πh(σ−1)]
∂θ

+ (1− p2)∂[πh(σ+1)−πh(σ)]
∂θ

}
−K{p1

∂[πl(σ)−πl(σ+1)]
∂θ

+ (1− p1)∂[πl(σ−1)−πl(σ)]
∂θ

}

]
.

Therefore, the effect of θ on laggard’s R&D investment is determined by the sign of

∂p2/∂θ =

c′′(p1)K{p1
∂[πl(σ)−πl(σ+1)]

∂θ
+ (1− p1)∂[πl(σ−1)−πl(σ)]

∂θ
}

c′′(p1)c′′(p2)−K{[πh(σ)− πh(σ − 1)]− [πh(σ + 1)− πh(σ)]}K{[πl(σ)− πl(σ + 1)]− [πl(σ − 1)− πl(σ)]}

K{[πl(σ)− πl(σ + 1)]− [πl(σ − 1)− πl(σ)]}K{p2
∂[πh(σ)−πh(σ−1)]

∂θ
+ (1− p2)∂[πh(σ+1)−πh(σ)]

∂θ
}

c′′(p1)c′′(p2)−K{[πh(σ)− πh(σ − 1)]− [πh(σ + 1)− πh(σ)]}K{[πl(σ)− πl(σ + 1)]− [πl(σ − 1)− πl(σ)]}
.

Note that the common denominator is positive by the convexity of the cost function and

πl(·) and the concavity of πl(·). In addition, both numerators are negative by the convexity

of the cost function and πl(·), and assumptions (5) and (6). Therefore, the laggard’s R&D

investment decreases with product substitutability in this case as well.

11



C Deterministic Innovation

Here, we study the implications of deterministic innovation in our ladder-type model. In

such an environment, the “probability of success” (or “research capacity”) is either 0 or 1,

and so firms’ R&D problem becomes a discrete-choice problem. As a result, equilibrium

research capacities will be either flat or (non-trivial) step functions over the whole range of

θs. Therefore, the shape of these will in general be different from the shape of equilibrium

research capacities under stochastic innovation, which is smooth and, over some θs, mono-

tone. Let c ≡ c(1) and assume that indifferences are resolved in favour of innovating (i.e. of

setting research capacity to one). Denote with 1{Ω} the index function that takes value one

if Ω holds and value zero otherwise.

C.1 The Investment Problem in an Unlevelled Industry

C.1.1 The (First-Stage) Laggard’s Problem

The laggard maximizes with respect to p2 ∈ {0, 1} its expected profits

πl + p2(1− p∗1)(πs − πl)− c(p2)/K,

where p∗1 ∈ {0, 1}. We have that the laggard decides to innovate (i.e. to set p2 = 1) if

K(1− p∗1)(πs − πl) ≥ c;

that is,

p∗2 = 1{K(1− p∗1)(πs − πl) ≥ c}.

C.1.2 The (First-Stage) Leader’s Problem

The leader maximizes with respect to p1 ∈ {0, 1} its expected profits

πh − (1− p1)p∗2(πh − πs)− c(p1)/K,

where p∗2 ∈ {0, 1}. We have that the leader decides to innovate (i.e. to set p1 = 1) if

Kp∗2(πh − πs) ≥ c;
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that is,

p∗1 = 1{Kp∗2(πh − πs) ≥ c}.

C.1.3 Equilibrium Investment

Observe that, in equilibrium, it cannot be the case that {p∗1, p∗2} = {1, 0} because if p∗2 = 0,

then, the leader’s benefit from innovating is zero, and so the equilibrium would also set the

research capacity to zero. Related, it cannot be the case, in equilibrium, that {p∗1, p∗2} = {1, 1}
because if p∗1 = 1, then, the laggard’s benefit from innovating is zero, and so equilibrium

would set the research capacity to zero. The above optimality conditions thus imply the

following two cases in equilibrium.

First, {p∗1, p∗2} = {0, 0} if K(πs − πl) < c. Second, {p∗1, p∗2} = {0, 1} if K(πs − πl) ≥
c > K(πh − πs). Therefore, in the model with deterministic innovation, the leader never

innovates. Consequently, the laggard’s innovation decision is given by:

p∗2 = 1{K(πs − πl) ≥ c}.

Turning to the impact of a higher degree of product substitutability on the laggard’s

investment, we clearly have, given our assumptions (2) and (3) in the main text, that an

increase in θ (weakly) decreases p∗2, which echoes our result in the main text under stochastic

innovation, where the laggard’s investment is decreasing in θ.

C.2 The Investment Problem in a Levelled Industry

Each firm i = 1, 2, while taking as given the opponent’s choice, p−i, maximizes with respect

to pi ∈ {0, 1} the following expected profits

p∗−iπl + (1− p∗−i)πs + pi[p
∗
−i(πs − πl) + (1− p∗−i)(πh − πs)]−

c(pi)

K
.

At optimum, we have:

pi = 1{K[p∗−i(πs − πl) + (1− p∗−i)(πh − πs)] ≥ c}.

Therefore, in a symmetric equilibrium, where p∗i = p∗−i = p∗, we have that

p∗ = 1{K[p∗(πs − πl) + (1− p∗)(πh − πs)] ≥ c}.
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Suppose that p∗ = 1. Then, the above equilibrium condition implies that K(πs− πl) ≥ c

must be true. If, on the other hand, p∗ = 0, then, the above equilibrium condition implies

that K(πh − πs) < c must be true. Thus observe that if (πs − πl) < c/K ≤ (πh − πs), then,

there is no symmetric equilibrium. Note also that if (πh − πs) < c/K ≤ (πs − πl), then, we

have multiplicity of equilibria: one equilibrium features innovation and the other equilibrium

features no innovation. These are in contrast to what we find in our model with stochastic

innovation.

As in our model with stochastic innovation, we restrict attention to an environment where

there exists a unique symmetric equilibrium for all values of θs. We thus assume hereafter

that either max{(πh − πs), (πs − πl)} < c/K for all θ, or min{(πh − πs), (πs − πl)} ≥ c/K

for all θ. In the former case, there is only one symmetric equilibrium where firms do not

innovate for all θ, while in the latter case, there is only one symmetric equilibrium where

firms do innovate for all θs. Thus, in both cases the research capacity is constant over all θs.

These findings are consistent with our result in the main text under stochastic innovation,

where the symmetric equilibrium investment might not be an increasing function of θ.

14



D Continuous Innovation

Here, we study the R&D problem of Cournot duopolists who choose at the first stage of

their interaction, simultaneously and independently, an investment ai ∈ [0, a], i = 1, 2 that

costs ĉ(ai)
K

and determines the maximum possible increase in their cost-adjusted quality. We

allow for the presence of a post-investment shock, xi ∈ [0, x), which may reduce the impact

of the investment. Specifically, we postulate that the realized increase in the cost-adjusted

quality (i.e. innovation) is equal to aixi.

After both innovations are realized, production takes place at the second stage of the

firms’ interaction, in a linear Cournot duopoly under product substitutability with constant

marginal cost κi and linear demand pi = bi − γqi − θq−i, 0 < θ < γ, where the second-stage

cost-adjusted quality of firm i is defined by ni ≡ bi − κi > 0, for any −i 6= 1, i = 1, 2. As is

our convention so far, denote hereafter with i = 1 the leader in the industry and with i = 2

the laggard at the second stage, i.e. n1 ≥ n2.

Denote with G(xi) the cdf of the shock xi, i = 1, 2. The firms’ shocks are i.i.d. Let x̂ be

the mean shock faced by firms. The case of deterministic innovation (i.e. when there is no

uncertainty) is captured by the case where G is the Dirac distribution, GD(x), putting all

probability at x = x (and hence x̂ = x) with x = 1.

Let the cost-adjusted qualities of the leader and the laggard at the first stage be equal to

n+σ and n−σ, respectively, where, with some abuse of notation in this Section, σ = 1, ..., S,

S < n; that is, 2σ is the inherited “technology gap” between the leader and the laggard at

the first stage (i.e. before investment taking place). The case with σ = 0 captures a levelled

industry at the first stage, where there is no technology gap between the firms at the time

of investment. Let us denote hereafter the first-stage leader with the index j = 1, 2. We will

also denote the first-stage laggard with the index −j = 1, 2, −j 6= j.

The cost-adjusted qualities at the second stage of the first-stage leader and laggard are

equal to n+σ+ajxj and n−σ+a−jx−j, respectively. Therefore, cost-adjusted qualities can

change by a very small amount (i.e. “incrementally”).3 Crucially, in this model, depending

on investments and shocks, the laggard of the first stage may become the leader in the second

stage; this will be the case when n1 = n+ σ + ajxj < n2 = n− σ + a−jx−j.

3Note that when the second-stage cost-adjusted qualities of the first-stage laggard and leader are given
by n+ σ+ 2σ1{ajxj > ω} and n− σ+ 2σ1{a−jx−j > ω} with σ = 1, ..., S and ω is a constant, respectively,
where x ∈ [0,∞) and G has a well-defined density g, we have instead a “technology-ladder” model. In
that model, cost-adjusted qualities change in a discrete manner, firms can go up in the ladder one step at a
time (hence, there is no “leapfrogging”), and every step of the ladder is of length 2σ. In such a model, the
“probability of success” (or “research capacity”) for firm i is pi ≡ 1 − G( ωai ). The probability of success is

concave in ai when g(x) + d[xg(x)]
dx > 0.

15



We know, then, that the equilibrium economic rents attained by duopolist i = 1, 2, equal

Π∗i = γ (q∗i )
2 ,

where

q∗i =
2γni − θn−i

4γ2 − θ2
,

if θ ≤ 2γ n2

n1
, while

q∗1 =
n1

2γ
, q∗2 = 0,

if 2γ n2

n1
< θ < γ.

Observe that the returns from investment depend on the realized second-stage cost-

adjusted qualities of both firms n1 and n2 as well as the degree of substitutability θ.

Denote with 1{Ω} the index function that takes value one if Ω holds and value zero

otherwise. We also impose the following assumptions that guarantee that the second-stage

laggard’s output is positive; that is,

Assumption A 2γ
θ
> n−σ

n+σ
> θ

2γ
and x ≤

[
n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]

a

]
.

To ensure that the problems of the first-stage laggard and leader are well-behaved, we

also formulate

Assumption B min ĉ′′(a) > K (2γ)3x2

(4γ2−θ2)2
.

Before we move to the characterization of the equilibrium in an unlevelled industry we

prove the following result, which will subsequently be useful.

Lemma
[
K

(2γ)3x21
(4γ2−θ2)2

− ĉ′′(a1)
] [
K

(2γ)3x22
(4γ2−θ2)2

− ĉ′′(a2)
]
>
[
K (2γ)2x1θx2

(4γ2−θ2)2

]2

Proof. Note that by Assumption B, x ≥ x1, x ≥ x2 and γ > θ, we have:

[minĉ′′(a)] 2 >

[
K

(2γ)3 x2

(4γ2 − θ2)2

]2

⇒

[−ĉ′′(a1)] [−ĉ′′(a2)] >

[
K

(2γ)2 2θx1x2

(4γ2 − θ2)2

]2

⇒

[
K

(2γ)3 x2
1

(4γ2 − θ2)2 − ĉ
′′(a1)

][
K

(2γ)3 x2
2

(4γ2 − θ2)2 − ĉ
′′(a2)

]
>

[
K

(2γ)2 θx1x2

(4γ2 − θ2)2

]2
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D.1 The Investment Problem in an Unlevelled Industry

D.1.1 The First-Stage Laggard’s Problem

Consider firm j = 2 taken to be the laggard in the first stage.

Suppose that x2 ≤ 2σ+a1x1
a2

in which case we have that the first-stage laggard remains

the laggard or catches up with the leader in the second stage (i.e. n2 = n− σ + a2x2). Let

X2(a2, a1, x1) ≡ θ
2γ

[n+σ+a1x1]
a2

− [n−σ]
a2

. Assumption A implies that x ≤
[
n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]

a

]
=

2γ
θ

[
n[1− θ

2γ
]−σ[1+ θ

2γ
]

a

]
and hence that x1 ≤ 2γ

θ

[
n[1− θ

2γ
]−σ[1+ θ

2γ
]

a1

]
and, thereby, X2(a2, a1, x1) ≤

0 ≤ x2 for any x2 ∈ [0, x). Recall from the oligopoly problem above that if x2 ≥ X2(a2, a1, x1),

then, θ ≤ 2γ n2

n1
and, thereby, the second-stage rents of the first-stage laggard are equal to

γ
(

2γn2−θn1

4γ2−θ2

)2

= π2(a2x2, a1x1) ≡ γ
(
n(2γ−θ)−σ(2γ+θ)+2γa2x2−θa1x1

4γ2−θ2

)2

.

Suppose instead that x2 >
2σ+a1x1

a2
in which case we have that the first-stage laggard

becomes the leader in the second stage (i.e. n1 = n − σ + a2x2). Let Y2(a2, a1, x1) ≡
2γ
θ

[n+σ+a1x1]
a2

− [n−σ]
a2

. Assumption A implies that x ≤
[
n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]

a

]
≤ n[ 2γ

θ
−1]+σ[1+ 2γ

θ
]

a
and

hence that x ≤ n[ 2γ
θ
−1]+σ[1+ 2γ

θ
]+ 2γ

θ
a1x1

a1
and, thereby, Y2(a2, a1, x1) ≥ x > x2 for any x2 ∈ [0, x).

Recall from the oligopoly problem above that if x2 ≤ Y2(a2, a1, x1) ≡ 2γ
θ

[n+σ+a1x1]
a2

− [n−σ]
a2

,

then, θ ≤ 2γ n2

n1
and, thereby, the rents in the second stage of the first-stage laggard are equal

to γ
(

2γn1−θn2

4γ2−θ2

)2

= π2(a2x2, a1x1).

It follows that the laggard of the first stage maximizes with respect to a2 ≥ 0 the following

expected profits:

x∫
0

1{2σ + a1x1

a2

< x}
∫ x

2σ+a1x1
a2

π2(a2x2, a1x1)dG(x2)dG(x1)+

x∫
0

∫ min{x, 2σ+a1x1
a2

}

0

π2(a2x2, a1x1)dG(x2)dG(x1)− ĉ(a2)

K
=

x∫
0

1{2σ + a1x1

a2

< x}
∫ x

0

π2(a2x2, a1x1)dG(x2)dG(x1)+

x∫
0

1{2σ + a1x1

a2

≥ x}
∫ x

0

π2(a2x2, a1x1)dG(x2)dG(x1)− ĉ(a2)

K
=
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x∫
0

∫ x

0

π2(a2x2, a1x1)dG(x2)dG(x1)− ĉ(a2)

K
.

Assumption B ensures that

∂2

∂a2
2

[Kπ2(a2x2, a1x1)− ĉ(a2)] = K (2γ)2 x2

(
2γx2

(4γ2 − θ2)2

)
− ĉ′′(a2) < 0,

and so the above objective function is concave (as in our “ladder-type” model).4 The first-

order condition (at an interior solution) is thus

K

x∫
0

∫ x

0

∂

∂a2

π2(a2x2, a1x1)dG(x2)dG(x1) = ĉ′(a2).

Note now that

∂

∂a2

π2(a2x2, a1x1) = 2γ

(
n(2γ − θ)− σ(2γ + θ) + 2γa2x2 − θa1x1

4γ2 − θ2

)
2γx2

4γ2 − θ2
> 0,

and hence we have that

∂2

∂a2∂a1

Kπ2(a2x2, a1x1) = K (2γ)2 x2

(
−θx1

(4γ2 − θ2)2

)
< 0

as in our “ladder-type” model and that

∂2

∂a2∂θ
Kπ2(a2x2, a1x1) = K (2γ)2 x2

(
−(n+ σ + a1x1)

(4γ2 − θ2)2 + 4θ
n(2γ − θ)− σ(2γ + θ) + 2γa2x2 − θa1x1

(4γ2 − θ2)3

)
.

D.1.2 The First-Stage Leader’s Problem

Consider firm j = 1 taken to be the leader in the first stage.

Suppose that x1 ≥ −2σ+a2x2
a1

in which case we have that the first-stage leader stays

the leader or is caught up by the laggard in the second stage (i.e. n1 = n + σ + a1x1).

Let Y1(a1, a2, x2) ≡ 2γ
θ

[n−σ+a2x2]
a1

− [n+σ]
a1

. Assumption A implies that x ≤
[
n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]

a

]
and hence that x ≤ n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]+ 2γ

θ
a2x2

a1
and, thereby, Y1(a1, a2, x2) ≥ x > x1 for any

x1 ∈ [0, x). Recall from the oligopoly problem above that if x1 ≤ Y1(a1, a2, x2), then,

4Notice that under certainty, the above objective function becomes π2(a2, a1)− ĉ(a2)
K .
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θ ≤ 2γ n2

n1
and, thereby, the rents in the second stage of the first-stage leader are equal to

γ
(

2γn1−θn2

4γ2−θ2

)2

= π1(a1x1, a2x2) ≡ γ
(
n(2γ−θ)+σ(2γ+θ)+2γa1x1−θa2x2

4γ2−θ2

)2

.

Suppose that x1 <
−2σ+a2x2

a1
in which case we have that the first-stage leader becomes the

laggard in the second stage (i.e. n2 = n+σ+a1x1). Let X1(a1, a2, x2) ≡ θ
2γ

[n−σ+a2x2]
a1

− [n+σ]
a1

.

Assumption A implies that x ≤
[
n[ 2γ

θ
−1]−σ[1+ 2γ

θ
]

a

]
=
[
n[ 2γ

θ
−1]+σ[1+ 2γ

θ
]

a

]
and hence that x2 ≤[

n[ 2γ
θ
−1]+σ[1+ 2γ

θ
]

a2

]
and, thereby, X1(a1, a2, x2) ≤ 0 ≤ x1 for any x1 ∈ [0, x). Recall from

the oligopoly problem above that if x1 ≥ X1(a1, a2, x2), then, θ ≤ 2γ n2

n1
and, thereby, the

second-stage rents of the first-stage leader are equal to γ
(

2γn2−θn1

4γ2−θ2

)2

= π1(a1x1, a2x2).

It follows that the leader of the first stage maximizes with respect to a1 ≥ 0 the following

expected profits

x∫
0

1{−2σ + a2x2

a1

< x}
∫ x

max{0,−2σ+a2x2
a1

}
π1(a1x1, a2x2)dG(x1)dG(x2)+

x∫
0

1{−2σ + a2x2

a1

> 0}
∫ min{x,−2σ+a2x2

a1
}

0

π1(a1x1, a2x2)dG(x1)dG(x2)− ĉ(a2)

K
=

x∫
0

1{0 < −2σ + a1x1

a2

< x}
∫ x

0

π1(a1x1, a2x2)dG(x1)dG(x2)+

x∫
0

1{−2σ + a1x1

a2

≤ 0 or
−2σ + a1x1

a2

≥ x}
∫ x

0

π1(a1x1, a2x2)dG(x1)dG(x2)− ĉ(a1)

K
=

x∫
0

∫ x

0

π1(a1x1, a2x2)dG(x1)dG(x2)− ĉ(a1)

K
.

Assumption B ensures that

∂2

∂a2
1

[Kπ1(a1x1, a2x2)− ĉ(a1)] = K (2γ)2 x1

(
2γx1

(4γ2 − θ2)2

)
− ĉ′′(a1) < 0,

and so the above objective function is concave (as in our “ladder-type” model).5 The first-

5Notice that under certainty, the above objective function becomes π1(a1, a2)− ĉ(a1)
K .
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order condition (at an interior solution) is thus

K

x∫
0

∫ x

0

∂

∂a1

π1(a1x1, a2x2)dG(x1)dG(x2) = ĉ′(a1).

Note now that

∂

∂a1

π1(a1x1, a2x2) = 2γ

(
n(2γ − θ) + σ(2γ + θ) + 2γa1x1 − θa2x2

4γ2 − θ2

)
2γx1

4γ2 − θ2
> 0

and hence we have that

∂2

∂a1∂a2

Kπ1(a1x1, a2x2) = K (2γ)2 x1

(
−θx2

(4γ2 − θ2)2

)
< 0,

in contrast to our “ladder-type” model and that

∂2

∂a1∂θ
π1(a1x1, a2x2) = (2γ)2 x1

(
−(n− σ + a2x2)

(4γ2 − θ2)2 + 4θ
n(2γ − θ) + σ(2γ + θ) + 2γa1x1 − θa2x2

(4γ2 − θ2)3

)
.

D.1.3 Equilibrium Investment

The Lemma implies that the Implicit Function Theorem is satisfied, and so we can find the

impact of a higher degree of product substitutability on the first-stage laggard’s investment

by using the Cramer’s rule. In more detail we have that[ ∫ x
0

∫ x
0

∂2

∂a21
[Kπ1(a1x1, a2x2)− ĉ(a1)] dG(x1)dG(x2)

∫ x
0

∫ x
0

∂2

∂a1∂a2
Kπ1(a1x1, a2x2)dG(x1)dG(x2)∫ x

0

∫ x
0

∂2

∂a2∂a1
Kπ2(a2x2, a1x1)dG(x1)dG(x2)

∫ x
0

∫ x
0

∂2

∂a22
[Kπ2(a2x2, a1x1)− ĉ(a2)] dG(x1)dG(x2)

]
×

[
∂a1
∂θ
∂a2
∂θ

]
=

[
−
∫ x

0

∫ x
0

∂2

∂a1∂θ
Kπ1(a1x1, a2x2)dG(x1)dG(x2)

−
∫ x

0

∫ x
0

∂2

∂a2∂θ
Kπ2(a2x2, a1x1)dG(x1)dG(x2)

]
.

Note first that the determinant of the Jacobian of the system of equations defined by

the leader’s and laggard’s first-order conditions above is positive due to the Lemma. Conse-

quently, to have that higher degree of product substitutability leads to lower investment for

the first-stage laggard given opponent’s investment (as it is the case in our model) we need

that

∂2

∂a2
1

[Kπ1(a1x1, a2x2)− ĉ(a1)]
∂2

∂a2∂θ
Kπ2(a2x2, a1x1)− ∂2

∂a2∂a1

Kπ2(a2x2, a1x1)K
∂2

∂a1∂θ
π1(a1x1, a2x2) > 0.
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Recall from our analysis above of the forms’ first-order conditions that ∂2

∂a2∂a1
π2(a2x2, a1x1) <

0, and that, by Assumption B, we have that ∂2

∂a21
[Kπ1(a1x1, a2x2)− ĉ(a1)] < 0. There-

fore, a sufficient condition for the above inequality is that ∂2

∂a2∂θ
π2(a2x2, a1x1) < 0 and

∂2

∂a1∂θ
π1(a1x1, a2x2) > 0. These are the counterparts of assumptions (2) and (3) in the

main text of our paper.

In what follows, we derive conditions on the parameters of the model that ensure these

two sufficient conditions.

We start by observing that ∂2

∂a2∂θ
π2(a2x2, a1x1) < 0 can be re-written as

4θ

(
n(2γ − θ)− σ(2γ + θ) + 2γa2x2 − θa1x1

4γ2 − θ2

)
< n+ σ + a1x1.

A sufficient condition for this is that (a) ax is high enough so that 4
(
n−σ3+2ax

3

)
> n+ σ,

and (b) γ is sufficiently high so that

4θ

(
n(2γ − θ)− σ(2γ + θ) + 2γax

4γ2 − θ2

)
< n+ σ.

To see this, recall first that γ > θ, and observe that the limit as γ becomes very large

of the left-hand side of the above inequality is zero (hence lower than n + σ), and that

4
(
n−σ3+2ax

3

)
> n+ σ implies that the left-hand side of the above inequality when evaluated

at γ = θ is higher than n + σ. Consequently, the Intermediate Value Theorem implies that

there is a threshold value of γ such that the above inequality is satisfied for all higher values

of γ. Second, observe that the above inequality implies directly that

4θ

(
n(2γ − θ)− σ(2γ + θ) + 2γa2x2 − θa1x1

4γ2 − θ2

)
< n+ σ + a1x1

as desired.

Next, observe that ∂2

∂a1∂θ
π1(a1x1, a2x2) > 0 can be re-written as

4θ

(
n(2γ − θ) + σ(2γ + θ) + 2γa1x1 − θa2x2

4γ2 − θ2

)
> n− σ + a2x2.

A sufficient condition for this is that (a) 4θ
(

4Sγ−θax
4γ2−θ2

)
> ax, (b) γ is sufficiently high so

that 4θ
2γ+θ

< 1, and (c) n is sufficiently low so that

4θ

(
n(2γ − θ) + σ(2γ + θ)− θax

4γ2 − θ2

)
> n− σ + ax.
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To see this, note first that both sides of the above inequality are linear in n. The correspond-

ing slope of the left-hand side is equal to 4θ(2γ−θ)
4γ2−θ2 = 4θ

2γ+θ
, which goes to zero as γ becomes

very large, while the corresponding slope of the right-hand side of the above inequality is

equal to one. Therefore, if γ is sufficiently high (i.e. specifically, γ > 3
2
θ), we have that as n

becomes very large the left-hand side of the above inequality ends up being lower than the

right-hand side of the above inequality. Recall next that n > σ and, then, observe that the

limit as n converges to σ of the left-hand side of the above inequality is equal to 4θ
(

4σγ−θax
4γ2−θ2

)
,

while the corresponding limit of the right-hand side of the above inequality is equal to ax.

Observe now that 4θ
(

4Sγ−θax
4γ2−θ2

)
> ax implies that there is a threshold value of σ such that

for sufficiently high σ, we have that 4θ
(

4σγ−θax
4γ2−θ2

)
> ax. Consequently,6 the Intermediate

Value Theorem implies that there is a threshold value of n such that the above inequality is

satisfied for all lower values of n. Finally, observe that the above inequality implies directly

that

4θ

(
n(2γ − θ) + σ(2γ + θ) + 2γa1x1 − θa2x2

4γ2 − θ2

)
> n− σ + a2x2

as desired.

To summarize, for sufficiently high ax, σ, γ and sufficiently low n(> σ), our result under

the “ladder-type” model that a higher degree of product substitutability reduces the R&D

investment of the first-stage laggard carries forward to the current model of incremental

investment as well (regardless of whether the investment outcome is certain or stochastic).7

D.2 The Investment Problem in a Levelled Industry

This problem is formulated by setting σ = 0 in the above two problems, where X1(z, w, x) =

X2(z, w, x) = X(z, w, x) ≡ θ
2γ

[n+wx]
z
− n

z
and Y1(z, w, x) = Y2(z, w, x) = Y (z, w, x) ≡

2γ
θ

[n+wx]
z
− n

z
and π1(zx, wy) = π2(zx, wy) = π(zx, wy) ≡ γ

(
n(2γ−θ)+2γzx−θwy

4γ2−θ2

)2

; that is,

each firm j = 1, 2, while taking as given the opponent’s choice a−j, maximizes with respect

6Notice here that, for θ → γ+, 4θ
(

4σγ−θax
4γ2−θ2

)
> ax becomes 4

(
4σ−ax

3

)
> ax and hence σ > 7

16ax. This is

compatible, under n → σ−, with the earlier requirement that 4
(
n−σ3+2ax

3

)
> n+ σ. To see this, note that

when n = σ, the latter inequality becomes σ < 8
14ax, where 8

14 >
7
16 .

7From Cramer’s rule and the above sufficient conditions that ensure ∂2

∂a2∂θ
π2(a2x2, a1x1) < 0 and

∂2

∂a1∂θ
π1(a1x1, a2x2) > 0, one can also easily see that, in contrast to our model, the effect of a higher

degree of product substitutability on the investment of the first-stage leader is positive. This follows from

the fact that here, as we have shown above, we have that ∂2

∂a1∂a2
π1(a1x1, a2x2) < 0.
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to aj ≥ 0 the following expected profits

x∫
0

∫ x

0

πj(ajxj, a−jx−j)dG(xj)dG(x−j)−
ĉ(aj)

K

with a−j = aj in a symmetric equilibrium.

Assumption B ensures that

∂2

∂a2
j

[Kπj(ajxj, a−jx−j)− ĉ(aj)] = K (2γ)2 xj

(
2γxj

(4γ2 − θ2)2

)
− ĉ′′(aj) < 0,

and so the above objective function is concave (as in our “ladder-type” model).8 The first-

order condition (at an interior solution) is thus

K

x∫
0

∫ x

0

∂

∂aj
πj(ajxj, a−jx−j)dG(xj)dG(x−j) = ĉ′(aj).

Note now that

∂

∂aj
πj(ajxj, a−jx−j) = 2γ

(
n(2γ − θ) + 2γajxj − θa−jx−j

4γ2 − θ2

)
2γxj

4γ2 − θ2
> 0.

Setting a = aj = a−j, the above first-order condition becomes

x∫
0

∫ x

0

K (2γ)2 xj

(
n(2γ − θ) + 2γaxj − θax−j

(4γ2 − θ2)2

)
dG(xj)dG(x−j) = ĉ′(a) (9)

and thus, using the Implicit Function Theorem, we have that

∂a

∂θ
= −

∫ x
0

∫ x
0
K (2γ)2 xj

(
−(n+ax−j)

(4γ2−θ2)2
+ 4θ

n(2γ−θ)+2γaxj−θax−j
(4γ2−θ2)3

)
dG(xj)dG(x−j)∫ x

0
K (2γ)2 xj

(
2γxj−θx−j
(4γ2−θ2)2

)
dG(xj)− ĉ′′(a)

.

The denominator is negative by Assumption B, whereas the numerator cannot be signed

without further restrictions on the primitives.9 On one hand, if 4θn(2γ−θ)+2γax
(4γ2−θ2)

≤ n, then,

4θ
n(2γ−θ)+2γaxj−θax−j

(4γ2−θ2)
< n+ ax−j for any profile of shocks, and so the numerator above and,

thereby, ∂a
∂θ

is always negative in contrast to our “ladder-type” model. If, on the other hand,

4θn(2γ−θ)+2γax
(4γ2−θ2)

> n, then, the sign of the numerator depends on the distribution G and the

8Notice that under certainty, the above objective function becomes πj(aj , a−j)− ĉ(aj)
K .

9Our conditions/assumptions so far do not guarantee the sign of the numerator above.
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size of a. In turn, the level of a and, thereby, the sign of the numerator above is affected

by the level of K. Specifically, we have from (9) that (as in our “ladder-type” model) the

higher the K, the higher a is in the symmetric equilibrium, and vice versa. Therefore, as

in our “ladder-type” model, the effect of an increase in product substitutability on R&D

investment in a levelled industry can be non-monotone and, crucially, dependent on the level

of R&D productivity K. Determining, however, the exact relationship is more complicated

in this model than the one in our main text.
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E Technical Details Omitted from Section 2

E.1 The First-Stage Unlevelled Industry

The investment problem of the laggard (firm = 2) is to maximize with respect to p2:

(1− p2)πl + p2 [p∗1πl + (1− p∗1)πs]− C(p2, K) =

πl + p2(1− p∗1)(πs − πl)−
c(p2)

K
.

Based on the model’s assumptions, this problem is well-defined. To understand this problem

note that increasing marginally the research capacity of firm i = 2 leads to a higher cost by

c′(p2)/K units, and to an increase in expected rents by (1 − p∗1)(πs − πl) units. The latter

increase is the gain from being in a levelled industry in the second stage, which occurs when

firm i = 2 innovates and the rival does not succeed in innovating.

Taking the first-order condition with respect to p2, we have at an interior solution (i.e.

when p∗2 > 0) that

K(1− p∗1)(πs − πl) = c′(p∗2). (10)

The optimal research capacity of the laggard p∗2 is increasing in its relative marginal benefit

K(1− p∗1)(πs − πl). Clearly, if K(1− p∗1)(πs − πl) ≤ c′(0) then p∗2 = 0.

The problem of the leader (firm = 1), in turn, is to maximize with respect to p1:

(1− p1)[p∗2πs + (1− p∗2)πh] + p1πh − C(p1, K) =

πh − (1− p1)p∗2(πh − πs)−
c(p1)

K
.

This problem is well-defined as well. As with the laggard’s problem, increasing marginally

the research capacity of firm i = 1 leads to a higher cost by c′(p1)/K units, and to an increase

in expected rents by p∗2(πh − πs) units. The latter increase is the gain from avoiding being

in a levelled industry in the second stage, which will occur when firm i = 1 fails to innovate

and the rival succeeds in innovating. Taking the first-order condition with respect to p1, we

have at an interior solution (i.e. when p∗1 > 0) that

Kp∗2(πh − πs) = c′(p∗1). (11)

The optimal research capacity of the leader p∗1 is increasing in its relative marginal benefit

Kp∗2(πh − πs). If Kp∗2(πh − πs) ≤ c′(0), we, then, have that p∗1 = 0.

25



Observe thus that if

c′(0) ≥ K(πs − πl), (12)

then, at equilibrium, there is no R&D investment by either the laggard or the leader. In this

case, the laggard’s marginal cost from investment at any strictly positive level of investment

is higher than the highest possible marginal benefit from investment, making zero investment

optimal. This, in turn, implies that zero investment is optimal for the leader as well (i.e.

p∗1 = p∗2 = 0).

We turn to the case when only the laggard chooses a strictly positive research capacity

(which requires that the above inequality does not hold). Let us rewrite the first-order

condition of the laggard (10) (after dropping the asterisks) as

p1 = 1− c′(p2)

K(πs − πl)
. (13)

Viewing this as defining a function p1(p2), we see that it is decreasing and concave in p2.

Moreover, it goes to minus infinity as p2 approaches 1. In addition, when p2 = c′−1(K(πs −
πl)), we have that p1 = 0. Clearly, then, if

c′(0) < K(πs − πl), (14)

the highest possible research capacity for the laggard, which is consistent with equilibrium

behavior and p1 ≥ 0, is equal to c′−1K(πs − πl)). As a direct consequence from the leader’s

incentives as described by (11), if also

c′−1K(πs − πl)) ≤
c′(0)

K(πh − πs)
, (15)

then, the leader’s marginal cost from investment at any strictly positive level of investment is

higher than the highest possible marginal benefit from investment, making zero investment

optimal. Thus, in the case where the above two inequalities are satisfied, we have that p∗1 = 0

and from (13): p∗2 = c′−1K(πs − πl)) > 0.

Turning to the case where both firms invest (which requires that from the above two

inequalities the last one does not hold), we rewrite the first-order condition of the leader

(11) (after dropping the asterisks) as

p2 =
c′(p1)

K(πh − πs)
. (16)
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Viewing this as defining a function p2(p1), we observe that it is increasing and convex in p1.

Moreover, it goes to infinity as p1 approaches 1. A diagrammatic inspection of (13) and (16)

is enough to convince the reader that if

c′(0) < K(πs − πl)

(and thereby that c′−1(K(πs − πl)) > 0), and

c′−1(K(πs − πl)) >
c′(0)

K(πh − πs)
, (17)

then, these two curves have a unique intersection at strictly positive values of p∗1 and p∗2

(together defining the equilibrium profile of research capacities).

This completes the characterization of equilibria when the industry is unlevelled in the

first stage. We have identified three cases: (a) where neither the leader nor the laggard

invests, (b) where the laggard but not the leader invests, and (c) where both the leader and

the laggard invest.

We restrict attention to the (more interesting) case where there is strictly positive in-

vestment from the laggard in the equilibrium. To start with, we observe that if p∗1 = 0,

then, the laggard’s R&D investment decreases with product substitutability: in this case

p∗2 = c′−1(K(πs − πl)), where, by assumption, c′−1(K(πs − πl)) is decreasing in θ.

Turning to the case where both firms invest, to find the effect of θ on the equilibrium

research capacities, we need to use the Implicit Function Theorem. So, dropping the asterisks

for notational simplicity, and using (10) and (11), we have that[
−c′′(p1) K(πh − πs)

−K(πs − πl) −c′′(p2)

][
∂p1/∂θ

∂p2/∂θ

]
=

[
−Kp2

∂[πh−πs]
∂θ

−K(1− p1)∂[πs−πl]
∂θ

]
.

Therefore, the effect of θ on laggard’s R&D investment is determined by the sign of

∂p2/∂θ =

c′′(p1)K(1− p1)∂[πs−πl]
∂θ

−K(πs − πl)Kp2
∂[πh−πs]

∂θ

c′′(p1)c′′(p2) +K(πh − πs)K(πs − πl)
.

Note that the denominator is positive by the convexity of the cost function and assump-

tion (1). In addition, the numerator is negative by the convexity of the cost function and

assumptions (2) and (3). Therefore, the laggard’s R&D investment decreases with product
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substitutability in this case as well.10

10One can easily see from the above that the effect of higher θ on the leader’s investment (i.e. ∂p1/∂θ)
cannot be signed without further assumptions on the primitives of the model.
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F Dependence of p̂ on θ

Recall that, at the levelled duopoly, we cannot say more about the monotonicity properties

of p∗ with respect to the degree of product substitutability θ, unless we impose more assump-

tions on the dependence of the industry’s rents profile on θ (see Subsection 2.1.2). Based on

the industry’s rents profile chosen in the experiments, the dependence of p̂ on θ is shown in

Figure 1. The relation is non-monotone. However, for the θs chosen in the experiments (i.e.

θ ∈ {0.1, 0.2, 0.5, 0.6}), p̂ is increasing in θ. In fact, up to θ = 0.66, p̂ is increasing in θ.

Figure 1: Dependence of p̂ on θ

Notes: We provide the relation between p̂ and θ. The most intense level of product substitutability chosen

in the experiments is θ = 0.6. The vertical dotted lines indicate the four levels of product substitutability

chosen in the experiments. Up to θ = 0.66, p̂ is increasing in θ.
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G Mann-Whitney-Wilcoxon Tests

To complement our regression analysis, we use the Mann-Whitney-Wilcoxon (non-parametric)

tests to determine any difference in the distributions of investment choices across the selected

levels of product substitutability. Specifically, the null hypothesis states that there is no dif-

ference in the distribution of investments so that it is equally likely that a randomly selected

value from one level of θ is less than or greater than a randomly selected value from another

level of θ. The results are displayed in Table 1. In Panel A, we report the p-values in the

laggard scenario, in Panel B, we report the p-values in the levelled scenario and, in Panel C,

we report the p-values in the leader scenario.

The regression results of Panel A in Table 3 in the manuscript show a significant negative

effect of product substitutability on investment choices of laggards both when the level of

R&D productivity is low and when it is high. Similar results are found using the Mann-

Whitney-Wilcoxon tests. Specifically, the statistics reported in Panel A of Table 1 reject the

null for the pairwise comparisons of θ = 0.1 vs. θ = 0.5 (p-value = 0.044) and θ = 0.1 vs.

θ = 0.6 (p-value = 0.061) when the level of R&D productivity is low, whereas when the level

of R&D productivity is high, the null is rejected for the levels θ = 0.1 vs. θ = 0.6 (p-value

= 0.008) and θ = 0.2 vs. θ = 0.6 (p-value = 0.033). Furthermore, the regression results

show that investment by levelled firms increases with product substitutability when the level

of R&D productivity is low. These results are corroborated in the Mann-Whitney-Wilcoxon

tests in Panel B of Table 1. Specifically, the tests reject the null that the distribution of

investments is equal when the level of R&D productivity is low in the pairwise comparisons

of θ = 0.1 vs. θ = 0.6 (p-value = 0.002) and θ = 0.5 vs. θ = 0.6 (p-value = 0.051). We

also examine the U-shaped but practically ‘flat’ relation between investment and product

substitutability identified by the proposed model when the level of R&D productivity is high.

Similar to the regression results, when the level of R&D productivity is high, none of the

p-values in the pairwise comparisons is statistically significant; that is, we cannot reject the

null that the distribution of investments across paired product substitutability levels is equal.

Finally, in Panel C of Table 1, we report the p-values of the Mann-Whitney-Wilcoxon tests to

determine any difference in the distribution of investments of the leaders across the selected

levels of product substitutability. In the pairwise comparisons, when R&D productivity is

high, we confirm that none of the p-values are lower than the 10% significance level.
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Table 1: Mann-Whitney-Wilcoxon Tests on Investment

Panel A: Laggard
Low R&D Productivity High R&D Productivity

Alternative Hypothesis: Investmenti 6= Investmentj

p-values p-values

θ = 0.1 vs. θ = 0.2 0.392 0.904

θ = 0.1 vs. θ = 0.5 0.044 0.164

θ = 0.1 vs. θ = 0.6 0.061 0.008

θ = 0.2 vs. θ = 0.5 0.238 0.367

θ = 0.2 vs. θ = 0.6 0.157 0.033

θ = 0.5 vs. θ = 0.6 0.793 0.173

Panel B: Levelled

Low R&D Productivity High R&D Productivity

Alternative Hypothesis: Investmenti 6= Investmentj

p-values p-values

θ = 0.1 vs. θ = 0.2 0.122 0.627

θ = 0.1 vs. θ = 0.5 0.105 0.238

θ = 0.1 vs. θ = 0.6 0.002 0.522

θ = 0.2 vs. θ = 0.5 0.856 0.576

θ = 0.2 vs. θ = 0.6 0.120 0.962

θ = 0.5 vs. θ = 0.6 0.051 0.488

Panel C: Leader

Low R&D Productivity High R&D Productivity

Alternative Hypothesis: Investmenti 6= Investmentj

p-values p-values

θ = 0.1 vs. θ = 0.2 0.772 0.951

θ = 0.1 vs. θ = 0.5 0.989 0.908

θ = 0.1 vs. θ = 0.6 0.270 0.564

θ = 0.2 vs. θ = 0.5 0.741 0.654

θ = 0.2 vs. θ = 0.6 0.061 0.448

θ = 0.5 vs. θ = 0.6 0.093 0.708

Notes: We utilize the Mann-Whitney-Wilcoxon tests to determine any differences (i 6= j) in the distribution

of investments across the selected levels of product substitutability for low and high R&D productivity. In

Panel A, we report the p-values in the laggard scenario, in Panel B, we report the p-values in the levelled

scenario and, in Panel C, we report the p-values in the leader scenario.
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H Experimental Instructions

H.1 K = 2.63, θ = 0.1, πh = £2.19, πs = £0.91, πl = £0.18

The purpose of this experimental session is to study how people make decisions in a particular

situation. Your earnings will depend upon the decisions you make as well as the decisions

that other people make. At the end of the session, you will be paid in cash your total

earnings. None of the other participants will be informed of your earnings, and likewise you

will not be informed of the earnings of others. Given that nobody will know of each other’s

identity, all the decisions you make during the experimental session will be anonymous.

For your participation in the experimental session, you will receive an initial

payment of £5.

The instructions are simple. If you have a question, please raise your hand. Aside from

these questions, any communication with other participants or looking at other participants’

screens is not permitted and will lead to your immediate exclusion from the experimental

session.

The instructions are identical to all participants.
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You are matched with another participant. Each participant manages a firm. Thus, there

are 2 firms within the industry. Both your firm and the other firm will make an

investment decision in each of 3 starting situations. The 3 starting situations differ

in the relative ranking of the two firms in the point score as follows:

i) Your firm is one point ahead in the point score from the other firm.

ii) The other firm is one point ahead in the point score from your firm.

iii) Both firms have the same number of points in the point score.

To help you decide on the level of investment to undertake in each of the 3 starting situations,

information is provided next. This information pertains to the investment levels and their

respective probabilities of success and costs. The higher your investment choice, the more

likely it is that your firm’s investment will be successful and that you will earn one point in

the point score. At the same time, a higher investment also leads to higher costs.

Investment levels take values from 0 to 80. On one hand, the investment level choice indicates

the probability of success as a percent; that is, an investment level choice of x, reflects a

probability of success of x%. On the other hand, the investment level choice determines

the cost; specifically, the cost is calculated using the formula 1
2.63
∗ x%

1−x%
, where x is the

investment level choice.

The Table displays some indicative (integer) investment levels and their respective probabil-

ities of success as well as the costs at each investment level. Recall that the cost is calculated

using the formula 1
2.63
∗ x%

1−x%
, where x is the investment level choice. The cost is displayed

in 4 decimal points.

After each firm has chosen its investment level in each of the 3 strarting situations, there

will be a computer draw that will determine whether the firm’s investment in each starting

situation is successful. Specifically, the computer will draw an integer from 1 to 100 (all

inclusive), where each integer has the same probability of being drawn. If the firm’s invest-

ment choice in some starting situation is x, hence the probability of success is x%, and the

computer draws a number above x, then the firm’s investment in that starting situation is
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Investment Probability of Success Cost
Level (%) (£)

0 0 0.0000
2 2 0.0078
4 4 0.0158
6 6 0.0243
8 8 0.0330
10 10 0.0422
12 12 0.0518
14 14 0.0619
16 16 0.0724
18 18 0.0834
20 20 0.0950
22 22 0.1072
24 24 0.1200
26 26 0.1335
28 28 0.1478
30 30 0.1629
32 32 0.1788
34 34 0.1958
36 36 0.2138
38 38 0.2329
40 40 0.2533
42 42 0.2752
44 44 0.2986
46 46 0.3237
48 48 0.3508
50 50 0.3800
52 52 0.4117
54 54 0.4461
56 56 0.4836
58 58 0.5248
60 60 0.5700
62 62 0.6200
64 64 0.6756
66 66 0.7376
68 68 0.8075
70 70 0.8867
72 72 0.9771
74 74 1.0815
76 76 1.2033
78 78 1.3473
80 80 1.5200
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unsuccessful. However, if the computer draws a number below or equal to x, then the firm’s

investment in that starting situation is successful. Note that it is possible that in a starting

situation, the investment of a firm is successful, whereas in another starting situation, the

investment of that firm is unsuccessful as it all depends on the firm’s investment choice in

each starting situation and the computer draw about the success (or not) of your investment.

Take starting situation i) where your firm is one point ahead in the point score from the

other firm. If your investment is successful, regardless of whether or not the investment of

the other firm turns out to be successful, you will again be ahead in the point score by one

point. If your investment is unsuccessful and so is the other firm’s investment, then again

you will be ahead in the point score by one point. If your investment is unsuccessful and the

other firm’s investment is successful, then you will be tied in the point score. Thus, unless

your investment is unsuccessful and the other firm’s investment is successful, you will be

ahead of the other firm in the point score by one point.

Take starting situation ii) where the other firm is one point ahead in the point score from

your firm. If the other firm’s investment is successful, regardless of whether or not your

investment turns out to be successful, the other firm will again be ahead in the point score

by one point. If the other firm’s investment is unsuccessful and so is your firm’s investment,

then again the other firm will be ahead in the point score by one point. If the other firm’s

investment is unsuccessful and your firm’s investment is successful, then you will be tied

in the point score. Thus, unless the other firm’s investment is unsuccessful and your firm’s

investment is successful, the other firm will be ahead of your firm in the point score by one

point.

Take starting situation iii) where both firms have the same number of points in the point

score. If the two firms’ investments are both successful or both unsuccessful, then the two

firms will still be tied in the point score. The only way for one firm to be ahead in the point

score from the other firm is for that firm’s investment choice to turn out successful and for

the other firm’s investment choice to turn out unsuccessful.

Determination of Payoffs

No feedback will be provided until both of you have made all your investment choices in the

three starting situations. To determine your payoffs, one starting situation will be selected

at random (i.e. each starting situation is equally likely to be drawn).
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Should the starting situation i) get chosen (i.e. your firm is one point ahead in the point

score from the other firm), your payoffs will be determined based on your investment choice

in i), the other participant’s investment choice in ii), and the respective outcomes of the

two firms’ investment decisions, which will determine the final relative standing in the point

score.

Should the starting situation ii) get chosen (i.e. the other firm is one point ahead in the point

score from your firm), your payoffs will be determined based on your investment choice in ii),

the other participant’s investment choice in i), and the respective outcomes of the two firms’

investment decisions, which will determine the final relative standing in the point score.

Should the starting situation iii) get chosen (i.e. both firms have the same number of points

in the point score), your payoffs will be determined based on your investment choice in iii),

the other participant’s investment choice in iii), and the respective outcomes of the two firms’

investment decisions, which will determine the final relative standing in the point score.

The payoffs of each firm depend on their final relative standing in the point score after the

computer draw about the success (or not) of their investment and the cost of their chosen

investment level.

• If your firm is ahead in the point score, then your firm will receive £2.19 minus the

cost of your chosen investment level, and the other firm will receive £0.18 minus the

cost of its chosen investment level.

• If the other firm is ahead in the point score, then the other firm will receive £2.19

minus the cost of its chosen investment level, and your firm will receive £0.18 minus

the cost of your chosen investment level.

• If both firms have the same number of points in the point score, then both your firm

and the other firm will receive £0.91 minus the cost of the chosen investment level of

each firm.

Your total earnings right now are set at £5. Should you make a loss, this will be deducted

from your total earnings of £5.
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Examples

Provide your answers to 2 decimal points.

1. Suppose you choose an investment level of 4. What is your probability of success? 0.04

What is your cost? £0.02 Suppose that the other firm chooses an investment level of 20.

What is its probability of success? 0.20 What is its cost? £0.10

2. Suppose you choose an investment level of 26. What is your probability of success? 0.26

What is your cost? £0.13 Suppose that the other firm chooses an investment level of 32.

What is its probability of success? 0.32 What is its cost? £0.18

3. Suppose you choose an investment level of 28. What is your probability of success? 0.28

What is your cost? £0.15 Suppose that the other firm chooses an investment level of 40.

What is its probability of success? 0.40 What is its cost? £0.25

4. Suppose your firm is one point behind in the point score from the other firm, and you

choose an investment level of 42. What is your probability of success? 0.42 What is your

cost? £0.28 Suppose that the other firm, which is one point ahead in the point score, chooses

an investment level of 48. What is its probability of success? 0.48 What is its cost? £0.35

Suppose your investment turns out to be successful, and the other firm’s investment turns

out to be successful. What are your payoffs? £0.18 - £0.28 = -£0.10 What are your total

earnings? £5 - £0.10 = £4.90 What are the payoffs of the other firm? £2.19 - £0.35 =

£1.84 What are the total earnings of the other firm? £5 + £1.84 = £6.84

5. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 54. What is your probability of success? 0.54

What is your cost? £0.45 Suppose that the other firm chooses an investment level of 40.

What is its probability of success? 0.40 What is its cost? £0.25 Suppose your investment

turns out to be successful and so does the other firm’s investment. What are your payoffs?

£0.91 - £0.45 = £0.46 What are your total earnings? £5 + £0.46 = £5.46 What are the

payoffs of the other firm? £0.91 - £0.25 = £0.66 What are the total earnings of the other

firm? £5 + £0.66 = £5.66
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6. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 68. What is your probability of success? 0.68

What is your cost? £0.81 Suppose that the other firm, which also has the same number of

points, chooses an investment level of 52. What is its probability of success? 0.52 What is

its cost? £0.41 Suppose your investment turns out to be unsuccessful, whereas the other

firm’s investment turns out to be successful. What are your payoffs? £0.18 - £0.81 = -£0.63

What are your total earnings? £5 - £0.63 = £4.37 What are the payoffs of the other firm?

£2.19 - £0.41 = £1.78 What are the total earnings of the other firm? £5 + £1.78 = £6.78

7. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 56. What is your probability of success? 0.56

What is your cost? £0.48 Suppose that the other firm, which also has the same number

of points, chooses an investment level of 8. What is its probability of success? 0.08 What

is its cost? £0.03 Suppose your investment turns out to be unsuccessful and so does the

other firm’s investment. What are your payoffs? £0.91 - £0.48 = £0.43 What are your total

earnings? £5 + £0.43 = £5.43 What are the payoffs of the other firm? £0.91 - £0.03 =

£0.88 What are the total earnings of the other firm? £5 + £0.88 = £5.88
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Quiz

Provide your answers to 2 decimal points.

1. How many firms are within an industry? 2

2. What are your total earnings right now? £5

3. How many investment decisions you need to make? 3

4. If your investment is successful, how many points in the point score do you earn? 1

5. If you choose an investment level of 12, what is your probability of success? 0.12

6. If you choose an investment level of 20, what is your cost? £0.10

7. Suppose you chose an investment level of 20 in the selected starting situation. To de-

termine whether the firm’s investment in the selected starting situation is successful the

computer draws integer 27. Is the firm’s investment in the selected starting situation suc-

cessful? No

8. Suppose you chose an investment level of 20 in the selected starting situation. To de-

termine whether the firm’s investment in the selected starting situation is successful the

computer draws integer 17. Is the firm’s investment in the selected starting situation suc-

cessful? Yes

9. Suppose you chose an investment level of 20 in the selected starting situation. To de-

termine whether the firm’s investment in the selected starting situation is successful the

computer draws integer 20. Is the firm’s investment in the selected starting situation suc-

cessful? Yes

10. Suppose your firm is one point ahead in the point score from the other firm, and you

choose an investment level of 30. Your investment turns out to be successful. What are your

payoffs? £2.03
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11. Suppose your firm is one point ahead in the point score from the other firm, and you

choose an investment level of 40. Your investment turns out to be unsuccessful. The other

firm’s investment turns out to be successful. What are your payoffs? £0.66

12. Suppose the other firm is one point ahead in the point score from your firm, and you

choose an investment level of 56. Your investment turns out to be successful. The other

firm’s investment turns out to be also successful. What are your payoffs? -£0.30

13. Suppose the other firm is one point ahead in the point score from your firm, and you

choose an investment level of 26. Your investment turns out to be unsuccessful. What are

your payoffs? £0.05

14. Suppose the other firm is one point ahead in the point score from your firm, and you

choose an investment level of 26. Your investment turns out to be unsuccessful. What are

your total earnings? £5.05

15. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 36. Your investment turns out to be unsuccessful.

The other firm’s investment turns out to be successful. What are your payoffs? -£0.03

16. Suppose both your firm and the other firm have the same number of points in the

point score, and you choose an investment level of 70. Your investment turns out to be

unsuccessful. The other firm’s investment turns out to be also unsuccessful. What are your

payoffs? £0.02

17. Suppose both your firm and the other firm have the same number of points in the

point score, and you choose an investment level of 44. Your investment turns out to be

unsuccessful. The other firm’s investment turns out to be also unsuccessful. What are your

payoffs? £0.61

18. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 20. Your investment turns out to be successful.

The other firm’s investment turns out to be also successful. What are your payoffs? £0.81
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19. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 40. Your investment turns out to be successful.

The other firm’s investment turns out to be unsuccessful. What are your payoffs? £1.94

20. Suppose both your firm and the other firm have the same number of points in the point

score, and you choose an investment level of 40. Your investment turns out to be successful.

The other firm’s investment turns out to be unsuccessful. What are your total earnings?

£6.94
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Game-Play Stage

You will be asked next to make an investment decision in each of 3 starting situations.

Remember that the 3 starting situations differ in the relative ranking of the two firms in the

point score as follows:

i) Your firm is one point ahead in the point score from the other firm.

ii) The other firm is one point ahead in the point score from your firm.

iii) Both firms have the same number of points in the point score.

The starting situations will be shown to you in no particular order. Recall that once you

make all three investment decisions, one starting situation will be selected at random (i.e.

each starting situation is equally likely to be drawn).

Once you enter your investment choice, you will be asked to confirm it. You are allowed to

enter any investment level choice as long as it spans from 0 to 80 all inclusive. Please note

that once you confirm your investment choice, you will not be allowed to change it; that is,

your investment choice will be final.
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Assume this is starting situation i) where you are asked to make an investment decision

knowing that:

i) Your firm is one point ahead in the point score from the other firm.

The Table displays some indicative (integer) investment levels and their respective probabil-

ities of success as well as the costs at each investment level. Recall that the cost is calculated

using the formula 1
2.63
∗ x%

1−x%
, where x is the investment level choice. The cost is displayed

in 4 decimal points.

Remember that:

The payoffs of each firm depend on their final relative standing in the point score after the

computer draw about the success (or not) of their investment and the cost of their chosen

investment level.

If your firm is ahead in the point score, then your firm will receive £2.19 minus the cost

of your chosen investment level, and the other firm will receive £0.18 minus the cost of its

chosen investment level.

If both firms have the same number of points in the point score, then both your firm and

the other firm will receive £0.91 minus the cost of the chosen investment level of each firm.

Once you enter your investment choice, you will be asked to confirm it. You are allowed to

enter any investment level choice as long as it spans from 0 to 80 all inclusive. Please note

that once you confirm your investment choice, you will not be allowed to change it; that is,

your investment choice will be final.

Your firm is one point ahead in the point score from the other firm. What is your investment

level?
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Investment Probability of Success Cost
Level (%) (£)

0 0 0.0000
2 2 0.0078
4 4 0.0158
6 6 0.0243
8 8 0.0330
10 10 0.0422
12 12 0.0518
14 14 0.0619
16 16 0.0724
18 18 0.0834
20 20 0.0950
22 22 0.1072
24 24 0.1200
26 26 0.1335
28 28 0.1478
30 30 0.1629
32 32 0.1788
34 34 0.1958
36 36 0.2138
38 38 0.2329
40 40 0.2533
42 42 0.2752
44 44 0.2986
46 46 0.3237
48 48 0.3508
50 50 0.3800
52 52 0.4117
54 54 0.4461
56 56 0.4836
58 58 0.5248
60 60 0.5700
62 62 0.6200
64 64 0.6756
66 66 0.7376
68 68 0.8075
70 70 0.8867
72 72 0.9771
74 74 1.0815
76 76 1.2033
78 78 1.3473
80 80 1.5200
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Assume this is starting situation ii) where you are asked to make an investment decision

knowing that:

ii) The other firm is one point ahead in the point score from your firm.

The Table displays some indicative (integer) investment levels and their respective probabil-

ities of success as well as the costs at each investment level. Recall that the cost is calculated

using the formula 1
2.63
∗ x%

1−x%
, where x is the investment level choice. The cost is displayed

in 4 decimal points.

Remember that:

The payoffs of each firm depend on their final relative standing in the point score after the

computer draw about the success (or not) of their investment and the cost of their chosen

investment level.

If the other firm is ahead in the point score, then the other firm will receive £2.19 minus the

cost of its chosen investment level, and your firm will receive £0.18 minus the cost of your

chosen investment level.

If both firms have the same number of points in the point score, then both your firm and

the other firm will receive £0.91 minus the cost of the chosen investment level of each firm.

Once you enter your investment choice, you will be asked to confirm it. You are allowed to

enter any investment level choice as long as it spans from 0 to 80 all inclusive. Please note

that once you confirm your investment choice, you will not be allowed to change it; that is,

your investment choice will be final.

The other firm is one point ahead in the point score from your firm. What is your investment

level?
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Investment Probability of Success Cost
Level (%) (£)

0 0 0.0000
2 2 0.0078
4 4 0.0158
6 6 0.0243
8 8 0.0330
10 10 0.0422
12 12 0.0518
14 14 0.0619
16 16 0.0724
18 18 0.0834
20 20 0.0950
22 22 0.1072
24 24 0.1200
26 26 0.1335
28 28 0.1478
30 30 0.1629
32 32 0.1788
34 34 0.1958
36 36 0.2138
38 38 0.2329
40 40 0.2533
42 42 0.2752
44 44 0.2986
46 46 0.3237
48 48 0.3508
50 50 0.3800
52 52 0.4117
54 54 0.4461
56 56 0.4836
58 58 0.5248
60 60 0.5700
62 62 0.6200
64 64 0.6756
66 66 0.7376
68 68 0.8075
70 70 0.8867
72 72 0.9771
74 74 1.0815
76 76 1.2033
78 78 1.3473
80 80 1.5200
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Assume this is starting situation iii) where you are asked to make an investment decision

knowing that:

iii) Both firms have the same number of points in the point score.

The Table displays some indicative (integer) investment levels and their respective probabil-

ities of success as well as the costs at each investment level. Recall that the cost is calculated

using the formula 1
2.63
∗ x%

1−x%
, where x is the investment level choice. The cost is displayed

in 4 decimal points.

Remember that:

The payoffs of each firm depend on their final relative standing in the point score after the

computer draw about the success (or not) of their investment and the cost of their chosen

investment level.

If your firm is ahead in the point score, then your firm will receive £2.19 minus the cost

of your chosen investment level, and the other firm will receive £0.18 minus the cost of its

chosen investment level.

If the other firm is ahead in the point score, then the other firm will receive £2.19 minus the

cost of its chosen investment level, and your firm will receive £0.18 minus the cost of your

chosen investment level.

If both firms have the same number of points in the point score, then both your firm and

the other firm will receive £0.91 minus the cost of the chosen investment level of each firm.

Once you enter your investment choice, you will be asked to confirm it. You are allowed to

enter any investment level choice as long as it spans from 0 to 80 all inclusive. Please note

that once you confirm your investment choice, you will not be allowed to change it; that is,

your investment choice will be final.

Both firms are tied in the point score. What is your investment level?
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Investment Probability of Success Cost
Level (%) (£)

0 0 0.0000
2 2 0.0078
4 4 0.0158
6 6 0.0243
8 8 0.0330
10 10 0.0422
12 12 0.0518
14 14 0.0619
16 16 0.0724
18 18 0.0834
20 20 0.0950
22 22 0.1072
24 24 0.1200
26 26 0.1335
28 28 0.1478
30 30 0.1629
32 32 0.1788
34 34 0.1958
36 36 0.2138
38 38 0.2329
40 40 0.2533
42 42 0.2752
44 44 0.2986
46 46 0.3237
48 48 0.3508
50 50 0.3800
52 52 0.4117
54 54 0.4461
56 56 0.4836
58 58 0.5248
60 60 0.5700
62 62 0.6200
64 64 0.6756
66 66 0.7376
68 68 0.8075
70 70 0.8867
72 72 0.9771
74 74 1.0815
76 76 1.2033
78 78 1.3473
80 80 1.5200
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