
Logic and Set Notation



Logic Notation

• p, q, r: statements

• ¬,∧,∨,⇒,⇔: logical operators

• ¬p: not p

• p ∧ q: p and q

• p ∨ q: p or q

• p⇒ q: p implies q

• p⇔ q:p if and only if q

We can build compound sentences using the above notation
and then determine their truth or falsity with the use of logical
operators.
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If p then q
A conditional statement consists of two parts, a hypothesis or
antecedent in the “if” clause and a conclusion or consequent
in the “then” clause. For instance, “If it rains, then they
cancel school.”

Given an if-then statement “if p, then q,” we can create three
related statements.

Statement: If p, then q.

Converse: If q, then p.

Inverse: If not p, then not q.

Contrapositive: If not q, then not p.

If the statement is true, then the contrapositive is also
logically true. If the converse is true, then the inverse is also
logically true.
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Example I

Statement: If three angles add up to 180 degrees, then they
must form a triangle.

Converse: If three angles form a triangle, then they must add
up to 180 degrees.

Inverse: If three angles do not add up to 180 degrees, then
they must not form a triangle.

Contrapositive: If three angles do not form a triangle, then
they must not add up to 180 degrees.
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Example II

Statement: If a quadrilateral is a rectangle, then it has two
pairs of parallel sides.

Converse: If a quadrilateral has two pairs of parallel sides, then
it is a rectangle. (FALSE!)

Inverse: If a quadrilateral is not a rectangle, then it does not
have two pairs of parallel sides. (FALSE!)

Contrapositive: If a quadrilateral does not have two pairs of
parallel sides, then it is not a rectangle.
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Truth Tables
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Logic, Set and Summation Notation

Branislav L. Slantchev
Department of Political Science, University of California – San Diego

April 3, 2005

1 Formal Logic Refresher

Here’s a notational refresher:

p,q, r statements; either true or false, not both
¬,∧,∨,⇒,� logical operators
¬p not p “it is not the case that p”
p ∧ q p and q both p and q
p ∨ q p or q either p or q or both
p ⇒ q p implies q if p then q
p� q p if and only if q p implies q and q implies p

We can build compound sentences using the above notation and then determine their truth
or falsity with the use of the logical operators. The truth tables of the logical operators are
very simple:

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

p q p ⇒ q
T T T
T F F
F T T
F F T

p ¬p
T F
F T

Note that the ∨ operator is inclusive. That is, the statement p ∨ q is true if (a) only p
is true, or (b) only q is true, or (c) both are true. This is different from the use of ‘or’ in
everyday language, which is exclusive. That is, the statement p ‘or’ q is true if (a) only p is
true, or (b) only q is true, but is false if both are true. Although sometimes a special symbol
is used to denote the ‘exclusive-or’, this operator is redundant because we can simply write
[p ∨ q]∧¬[p ∧ q] to express it.

Be very careful where you place parentheses. For example, what does p ∨ q ⇒ ¬p mean?
Does it mean p∨ (q ⇒ ¬p) or does it mean (p∨ q)⇒ ¬p? The first statement is always true
while the second is true only when p is false.

We shall adopt the following convention. First, locate ¬ followed by a simple statement
such as p and take the brackets around p as implicit. Then, find instances where two state-
ments are joined by ∧ or ∨ and take the brackets around them as implicit. Thus, by this

Note that in the statement p⇒ q, if p is false, then q is
vacuously true. For example, “all cellphones in the room are
turned off” will be true when there are no cellphones in the
room.

We can think of the statement p⇒ q as two separate
statements. First, sufficiency: p is a sufficient condition for q
(“if” p then q). Second, necessity: q is a necessary condition
for p (i.e. “only if” q then p).
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Truth Tables

You should make sure that you understand the following truth
table which depicts p and q as jointly necessary and sufficient
conditions.

convention, the correct interpretation of the example above is (p ∨ q) ⇒ (¬p). This conven-
tion still does not allow us to interpret p∧q∨r unambiguously, and so we shall use brackets
to make the meaning clear.

Pay special attention to the ⇒ operator because its expression in words may also be mis-
leading. We can think of the statement p ⇒ q, as two separate statements. First, sufficiency:
p is a sufficient condition for q. That is, whenever p is true, then q must be true as well, but
whenever p is false, then q can be either true or false. Second, necessity: q is a necessary
condition for p. That is, if q is false, then p must be false as well. If q is true, then p can
be either true or false. You should make sure that you understand the following truth table
which depicts p and q as jointly necessary and sufficient conditions.

p q p� q
T T T
T F F
F T F
F F T

We shall deal with necessary and sufficient conditions quite a bit, so you should make sure
you thoroughly understand them.

A “tautology” is a compound statement that is always true (like p∨[q ⇒ ¬p], for example).
A “theorem” (or proposition, or lemma or corollary) is a tautology of the form [p1 ∧ p2 ∧
. . . ∧ pk] ⇒ q. The statements p1, p2, . . . , pk are “assumptions.” We would generally write
something like: “Assume (a) p1, (b) p2, . . ., and (z) pk. Then q.”

How do we prove theorems? There are several types of logical rules available:

1. Simplification: From p ∧ q we can infer p and we can infer q.

2. Addition: From p we can infer p ∨ q.

3. Conjunction: From p and q we can infer p ∧ q.

4. Disjunctive Syllogism: From [p ∨ q]∧¬p we can infer q.

5. Modus Ponens: From [p ⇒ q]∧ p we can infer q.

6. Modus Tollens: From [p ⇒ q]∧¬q we can infer ¬p.

7. Hypothetical Syllogism: From [p ⇒ q]∧ [q ⇒ r] we can infer [p ⇒ r].

8. Constructive Dilemma: From [p ⇒ q]∧ [s ⇒ t]∧ [p ∨ s] we can infer [q ∨ t].
To apply these rules, we usually need some rules of replacements (the ‘≡‘ sign below reads

“is interchangeable with,” which means “has the same truth value as”):

1. Double Negation: p ≡ ¬¬p.

2. Tautology: p ∨ p ≡ p.

3. Commutation: p ∨ q ≡ q ∨ p, and p ∧ q ≡ q ∧ p.

4. Association: [p ∨ q]∨ r ≡ p ∨ [q ∨ r], and [p ∧ q]∧ r ≡ p ∧ [q ∧ r].
5. Distribution: p ∨ [q ∧ r] ≡ [p ∨ q]∧ [p ∨ r], and p ∧ [q ∨ r] ≡ [p ∧ q]∨ [p ∧ r].

2
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Logical Rules
How do we prove theorems? There are several types of logical
rules available.

1 Simplification: From p∧ q we can infer p and we can infer
q.

2 Addition: From p we can infer p ∨ q.

3 Conjunction: From p and q we can infer p ∧ q.

4 Disjunctive Syllogism: From (p ∨ q) ∧ ¬p we can infer q.

5 Modus Ponens: From (p⇒ q) ∧ p we can infer q.

6 Modus Tollens: From (p⇒ q) ∧ ¬q we can infer ¬p.

7 Hypothetical Syllogism: From (p⇒ q) ∧ (q ⇒ r) we can
infer (p⇒ r).

8 Constructive Dilemma: From (p⇒ q) ∧ (s⇒ t)∧ (p∨ s)
we can infer (q ∨ t).
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Quantifiers

Sometimes we want to state generalities of the form “some
element in the set X has a property p(·)” and “every element
in the set X has property p(·).” To do this, we use quantifiers.

Existential: (∃x ∈ X)p(x) There exists an x in X such
that p(x).

Universal: (∀x ∈ X)p(x) For all x in X, p(x).
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Set Notation

• X, Y, Z: sets

• x, y, z: elements of sets

• x ∈ X: x is in X or x is an element in X

• x /∈ X: x is not in X

• Y ⊆ X: Y is a subset of X, or Y is included in X

• Y = X: Y is equal to X, or (Y ⊆ X) ∧ (X ⊆ Y )

• Y 6= X: Y is not equal to X, or ¬(Y = X)

• Y $ X: Y is a proper subset of X, or
(Y ⊆ X) ∧ (Y 6= X)

• ∅: the empty set (set with no elements)
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Set Notation

A set can be identified by listing its contents or by specifying a
property common to all and only the elements of that set. For
example, if X is the set of integers, then we can represent the
set consisting of the number 1, 2 and 3 by {1, 2, 3} or
{x ∈ X|0 < x < 4}, where the second representation is read
“the elements x of X such that 0 < x < 4.”

This method of defining sets is useful when the set is large.
For example, if X is the set of real numbers, the set of
positive real numbers is {x ∈ X|x > 0}. We could never list
these numbers.
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Set Operations

The following are some simple operations on sets. Let X be
our “universe of discourse” (that is, everything happens in this
set X). Let Y and Z be subsets of X. Then

1 Intersection: Y ∩ Z = {x ∈ X|(x ∈ Y ) ∧ (x ∈ Z)}.
2 Union: Y ∪ Z = {x ∈ X|(x ∈ Y ) ∨ (x ∈ Z)}.
3 Complement: Ȳ = {x ∈ X|x /∈ Y }.
4 Subtraction:
Y \ Z = Y ∩ Z̄ = {x ∈ X|(x ∈ Y ) ∧ (x /∈ Z)}.

The last operation is also called “the complement of Z relative
to Y .”
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Remarks

Sets are very useful for expressing order. For example, to
represent a point on the Cartesian plane by a pair of numbers
(one for horizontal and one for vertical position), we have to
express order. Whenever order is important, we enclose the
elements in parentheses: (5, 2). By convention, it is essential
to list 5 before 2 because the point (5, 2) is quite different
from the point (2, 5).

The elements do not have to be numbers: we can consider
(x, y, z) where x ∈ X, y ∈ Y and z ∈ Z with X, Y and Z
being any sets at all. For example, let X be the set of numbers
of Coke cans, Y be the set of numbers of whiskey shots, and
Z be the set of numbers of wine glasses. Then (3, 1, 10)
represents 3 Coke cans, 1 whiskey shot, and 10 glasses of wine.
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Remarks

When the elements are two, we call the signification of order
an “ordered pair.” For more elements, we have ordered triples,
all the way up to ordered n-tuples. The set of ordered n-tuples
from X1, X2, ..., Xn is the “n-fold cross product” (sometimes
called the Cartesian product) written as X1 ×X2 × ...×Xn.

For example, when n = 2 the cross-product of X1 and X2 is
defined as X1 ×X2 = {(x1, x2)|(x1 ∈ X1) ∧ (x2 ∈ X2)}. So,

if X1 = {1, 2, 3} and X2 = {Mike, Suzie, Peter}, then the
cross-product is X1 ×X2 =
{(1,Mike), (2,Mike), (3,Mike), (1, Suzie), (2, Suzie), (3, Suzie),
(1, P eter), (2, P eter), (3, P eter)}.

When X1 = X2 = · · · = Xn = R, we refer to their cross
product as the “n-dimensional Euclidean space.”
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