Logic and Set Notation



LoGICc NOTATION

® p. q,r: statements
® - A, V,= <& logical operators
® —p: notp
®* pAg: pandq
® pVg porg
® p=q: pimplies ¢
® p< qpifand only if ¢
We can build compound sentences using the above notation

and then determine their truth or falsity with the use of logical
operators.
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IF p THEN ¢

A conditional statement consists of two parts, a hypothesis or
antecedent in the “if" clause and a conclusion or consequent
in the “then” clause. For instance, “If it rains, then they
cancel school.”

Given an if-then statement “if p, then q,” we can create three
related statements.

Statement: If p, then q.

Converse: If q, then p.

Inverse: If not p, then not q.
Contrapositive: If not g, then not p.

If the statement is true, then the contrapositive is also
logically true. If the converse is true, then the inverse is also
logically true.
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ExXAMPLE 1

Statement: If three angles add up to 180 degrees, then they
must form a triangle.

Converse: If three angles form a triangle, then they must add
up to 180 degrees.

Inverse: If three angles do not add up to 180 degrees, then
they must not form a triangle.

Contrapositive: If three angles do not form a triangle, then
they must not add up to 180 degrees.
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ExXAMPLE 11

Statement: If a quadrilateral is a rectangle, then it has two
pairs of parallel sides.

Converse: If a quadrilateral has two pairs of parallel sides, then
it is a rectangle. (FALSE!)

Inverse: If a quadrilateral is not a rectangle, then it does not
have two pairs of parallel sides. (FALSE!)

Contrapositive: If a quadrilateral does not have two pairs of
parallel sides, then it is not a rectangle.
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TRUTH TABLES

p alpnra p alprva p alp=a p|-p
T T| T T T| T T T| T T| F
T F| F T F| T T F| F F| T
F T| F F T| T F T| T
F F| F F F| F F F| T

Note that in the statement p = ¢, if p is false, then ¢ is
vacuously true. For example, “all cellphones in the room are
turned off” will be true when there are no cellphones in the
room.

We can think of the statement p = ¢ as two separate
statements. First, sufficiency. p is a sufficient condition for ¢
(“if"” p then ¢). Second, necessity: ¢ is a necessary condition
for p (i.e. “only if" ¢ then p).
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TRUTH TABLES

You should make sure that you understand the following truth
table which depicts p and ¢ as jointly necessary and sufficient
conditions.

p alpea
T T| T
T F| F
F T| F
F F| T
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LocicAL RULES

How do we prove theorems? There are several types of logical
rules available.

® Simplification: From p A ¢ we can infer p and we can infer
q.

® Addition: From p we can infer pV q.

® Conjunction: From p and ¢ we can infer p A q.

0O Disjunctive Syllogism: From (p V q) A —p we can infer q.

® Modus Ponens: From (p = q) A p we can infer q.

® Modus Tollens: From (p = ¢) A —q we can infer —p.

@ Hypothetical Syllogism: From (p = ¢) A (¢ = r) we can
infer (p = 7).

@® Constructive Dilemma: From (p = q) A (s = t)A(pV s)
we can infer (g V t).
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(QUANTIFIERS

Sometimes we want to state generalities of the form “some
element in the set X has a property p(:)" and “every element

in the set X has property p(:)."” To do this, we use quantifiers.

Existential: (3z € X)p(x)  There exists an = in X such
that p(z).

Universal: (Vx € X)p(z)  Forall z in X, p(z).

Christos A. loannou



SET NOTATION

XY, Z: sets

x,1, z. elements of sets

e yc X: zisin X orxisan element in X

e r¢ X: xisnotinX

e Y C X: Y isasubset of X, or Y is included in X
Y =X:Yisequalto X,or (Y CX)A (X CY)
® Y # X: Y isnot equal to X, or =(Y = X)

o

Y ; X: Y is a proper subset of X, or
Y CX)N(Y #X)

e (): the empty set (set with no elements)
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SET NOTATION

A set can be identified by listing its contents or by specifying a
property common to all and only the elements of that set. For
example, if X is the set of integers, then we can represent the
set consisting of the number 1, 2 and 3 by {1,2,3} or

{z € X]0 < x < 4}, where the second representation is read
“the elements = of X such that 0 < x < 4."

This method of defining sets is useful when the set is large.
For example, if X is the set of real numbers, the set of
positive real numbers is {z € X |z > 0}. We could never list
these numbers.

Christos A. loannou
11/14



SET OPERATIONS

The following are some simple operations on sets. Let X be
our “universe of discourse” (that is, everything happens in this
set X). Let Y and Z be subsets of X. Then

©® Intersection: Y NZ ={z e X|(x€eY)N(z € Z)}.

® Union: YUZ ={reX|(zeY)V(reZ)}

© Complement: Y = {z € X|z ¢ Y},

© Subtraction:
Y\Z=YNZ={zeX|zeY)N(x ¢ Z)}.

The last operation is also called “the complement of Z relative
toY."
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REMARKS

Sets are very useful for expressing order. For example, to
represent a point on the Cartesian plane by a pair of numbers
(one for horizontal and one for vertical position), we have to
express order. Whenever order is important, we enclose the
elements in parentheses: (5, 2). By convention, it is essential
to list 5 before 2 because the point (5, 2) is quite different
from the point (2, 5).

The elements do not have to be numbers: we can consider
(x,y,z) where z € X, y € Y and z € Z with X,Y and Z
being any sets at all. For example, let X be the set of numbers
of Coke cans, Y be the set of numbers of whiskey shots, and
Z be the set of numbers of wine glasses. Then (3, 1, 10)
represents 3 Coke cans, 1 whiskey shot, and 10 glasses of wine.
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REMARKS

When the elements are two, we call the signification of order
an “ordered pair.” For more elements, we have ordered triples,
all the way up to ordered n-tuples. The set of ordered n-tuples
from Xy, Xy, ..., X, is the “n-fold cross product” (sometimes
called the Cartesian product) written as X; x X5 X ... X X,.

For example, when n = 2 the cross-product of X; and X5 is
defined as X; x X, = {(,Il,l'g)l(l‘l € Xl) A (1'2 € XQ)} So,

if X1 ={1,2,3} and X, = {Mike, Suzie, Peter}, then the
cross-product is X; X Xy =

{(1, Mike), (2, Mike), (3, Mike), (1, Suzie), (2, Suzie), (3, Suzie),
(1, Peter), (2, Peter), (3, Peter)}.

When X| = Xy =--- = X,, = R, we refer to their cross

product as the “n-dimensional Euclidean space.”
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