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Abstract

We propose a methodology that is generalizable to a broad class of repeated games in order to facilitate

operability of belief-learning models with repeated-game strategies. The methodology consists of (1) a

generalized repeated-game strategy space, (2) a mapping between histories and repeated-game beliefs,

and (3) asynchronous updating of repeated-game strategies. We implement the proposed methodology

by building on three proven action-learning models. Their predictions with repeated-game strategies

are then validated with data from experiments with human subjects in four, symmetric 2 × 2 games:

Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. The models with repeated-game

strategies approximate subjects’ behavior substantially better than their respective models with action

learning. Additionally, inferred rules of behavior in the experimental data overlap with the predicted

rules of behavior.

Keywords: Adaptive Models, Belief Learning, Repeated-Game Strategies, Finite Automata, Prisoner’s

Dilemma, Battle of the Sexes, Stag-Hunt, Chicken
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1. Introduction

The limitations of adaptive models with actions have been well recognized in the literature. For

instance, [23] note that learning behavior generally cannot be analyzed in terms of actions alone (p.

872). Along similar lines, [6] point out that actions “are not always the most natural candidates for the

strategies that players learn about” (p. 871). Yet developing models with repeated-game strategies has

been inhibited by several obstacles. First, since the set of possible strategies in repeated games is infinite

(uncountable), expecting a player to fully explore such an infinite set is unrealistic and impractical.

Second, as [41] note, “players face an inference problem going from histories to beliefs about opponents’

strategies” in repeated games (p. 25). A player’s beliefs about the opponent’s repeated-game strategy

become more complex because several different strategies can lead to the same history. Consequently,
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even though the history of play is publicly observed, a player may not know the opponent’s precise

strategy. Third, repeated-game strategies need several periods to be evaluated. Traditionally, action-

learning models required that the updating of each player’s action set occurs synchronously at the end of

each period. This is sensible if a player uses actions, but if a player uses repeated-game strategies, then

the player ought to play the stage game a number of times before assessing the payoff consequences of

the repeated-game strategy chosen.

In this study, we propose a methodology that is generalizable to a broad class of repeated games

in order to facilitate operability of belief-learning models with repeated-game strategies. The method-

ology consists of (1) a generalized repeated-game strategy space, (2) a mapping between histories and

repeated-game beliefs, and (3) asynchronous updating of repeated-game strategies. The first step in

operationalizing the proposed framework is to use generalizable rules, which require a relatively small

repeated-game strategy set but may implicitly encompass a much larger space (see, for instance, Stahl’s

rule learning in [55] and [56]). A large number of repeated-game strategies is impractical for updating un-

der most existing learning models because the probability of observing any particular strategy in the space

is near zero. We propose, instead, a generalized repeated-game strategy space where players’ strategies

are implemented by a type of finite automaton, called a Moore machine ([43]); thus, the strategy space

includes only a subset of the theoretically large set of possible strategies in repeated games. The second

step establishes a mapping between histories and repeated-game beliefs. In particular, we propose a fit-

ness function that counts the number of consecutive fits of each candidate strategy of the opponent with

the observed action profile sequence, starting from the most recent action profile and going backwards.

Beliefs for each candidate strategy of the opponent are derived by normalizing each strategy’s respective

fitness by the total fitness of all candidate strategies of the opponent. This novel approach solves the

inference problem of going from histories to beliefs about opponents’ strategies in a manner consistent

with belief learning.1 The third step accommodates asynchronous updating of repeated-game strategies.

A player’s strategy set is updated with the completion of a block of periods, and not necessarily at the end

of each period, as traditional action-learning models require. Furthermore, the probability of updating

the strategy set is endogenous and based on the “surprise-triggers-change” regularity identified by [22].2

Surprise is defined as the difference between actual and expected (anticipated) payoff. Thus, if a player

receives a payoff similar to what is expected, then surprise is low; hence, the probability of updating

the strategy set increases by a relatively small amount. However, if a player receives a payoff that is

drastically different from the one anticipated, then surprise is high; hence, the probability of updating

the strategy set increases by a relatively large amount. Henceforth, for brevity, we refer to learning of

repeated-game strategies as strategy learning. Table 1 shows the proposed methodology.

1Alternatively, [29] develop a model of learning of repeated-game strategies with standard reinforcement. Reinforcement
learning responds only to payoffs obtained by strategies chosen by the player and, thus, evades the inference problem
highlighted above. Yet reinforcement models are most sensible when players do not know the foregone payoffs of unchosen
strategies. Several studies show that providing foregone payoff information affects learning, which suggests that players do
not simply reinforce chosen strategies (see [42], [47], [6], [13], [45] and [58]).

2[22] observe that subjects exhibit a positive relationship (inertia) between recent and current action choices (see, also,
[12] and [21]). Yet the probability of terminating the inertia mode increases with surprise; that is, surprise triggers change.
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Generalized Repeated-Game Strategy Space
We propose a generalized repeated-game strategy space where players’ strategies are implemented by
a type of finite automaton, called a Moore machine ([43]).

Mapping Between Histories and Repeated-Game Beliefs
We propose a fitness function that counts the number of consecutive fits of each candidate strategy of
the opponent with the observed action profile sequence, starting from the most recent action profile
and going backwards. Beliefs for each candidate strategy of the opponent are derived by normalizing
each strategy’s respective fitness by the total number of fitness of all candidate strategies of the
opponent.

Asynchronous Updating of Repeated-Game Strategies
We propose that the updating of repeated-game strategies is endogenous and based on the “surprise-
triggers-change” regularity identified by [22]. Thus, a player’s strategy set is updated asynchronously
with the completion of a block of periods, and not, necessarily, at the end of each period.

Table 1: Proposed Methodology For Strategy Learning

We assess the impact of the proposed methodology by building on three leading action-learning

models: a self-tuning Experience Weighted Attraction model ([30]), a γ-Weighted Beliefs model ([9]),

and an Inertia, Sampling and Weighting model ([20]). The predictions of the three models with strategy

learning are validated with data from experiments with human subjects by [40] in four symmetric 2× 2

games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. We use the experimental

dataset to also validate the predictions of their respective models with action learning, which enables us

to determine the improvement in fit in moving from action-learning models to strategy-learning ones.

Finally, we infer rules of behavior in the experimental dataset and compare them to those predicted by

the strategy-learning models.

We find that the strategy-learning models approximate subjects’ behavior substantially better than

their respective models with action learning. Furthermore, inferred rules of behavior in the experimental

data overlap with the predicted rules of behavior. More specifically, the most prevalent rules of behavior

in the experimental dataset in the Prisoner’s Dilemma, Stag-Hunt, and Chicken games are the cooperative

rules of behavior “Grim-Trigger” and “Tit-For-Tat.” The same two rules emerge as the most prevalent in

the simulations. Likewise, in the Battle of the Sexes, the same cooperative rules of behavior implementing

alternations that prevail in the experimental dataset, also prevail in the simulations.

The paper proceeds as follows. In Section 2, we discuss the games and review the related experimental

literature. In Section 3, we provide details on the simulations and the goodness-of-fit measure used to

quantitatively compare the predictions of the models with laboratory experimental data. In Section 4, we

provide the action-learning models deployed to implement the proposed methodology. Our methodology is

presented in Section 5, and Section 6 displays the results of the computational simulations. Additionally,

we infer rules of behavior in the experimental data and compare them to the rules of behavior predicted

by the strategy-learning models. Finally, in Section 7, we offer concluding remarks and suggestions for

future research.
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Figure 1: Payoff Matrices

2. The Games

Our choice of games is not coincidental. We targeted four symmetric 2×2 games that, though simple,

capture important aspects of everyday experiences, such as cooperation, coordination and reciprocity. In

particular, we chose the Prisoner’s Dilemma game, the Battle of the Sexes game, the Stag-Hunt game,

and the Chicken game. The payoff matrices of the games are illustrated in Figure 1. The payoff matrix

of the Prisoner’s Dilemma game is indicated in Figure 1(a), where the cooperative action is denoted

with the letter “A” and the action of defection is denoted with the letter “B.” Each player’s dominant

strategy is to play B. The payoff matrix of the Battle of the Sexes game is indicated in Figure 1(b).

In this game, there are two pure-strategy Nash equilibria: (A,B) and (B,A) . Each player receives a

higher payoff in the equilibrium in which he plays B. Alternating between the two pure-strategy Nash

equilibria leads to the only Pareto optimal outcome where the two players receive equal payoffs. The

payoff matrix of the Stag-Hunt game is indicated in Figure 1(c). In this game, there are two pure-strategy

Nash equilibria: (A,A) and (B,B). However, outcome (A,A) is the payoff-dominant Nash equilibrium.

The payoff matrix of the Chicken game is indicated in Figure 1(d). In this game, there is a mixed

symmetric Nash equilibrium and two pure-strategy Nash equilibria: (A,B) and (B,A). Furthermore,

the mutual conciliation outcome of (A,A) yields higher payoffs than the average payoffs of each player

when alternating between the pure-strategy Nash equilibria.

Recently, [40] conducted laboratory experiments using the payoff matrices displayed in Figure 1. The
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experimental sessions were run at the Vernon Smith Experimental Economics Laboratory at Purdue Uni-

versity. Pairs were matched in a fixed matching protocol. The continuation probability for an additional

period was 0.99 and was common knowledge in all experimental sessions. The authors find remarkable

regularity in the data. In the Prisoner’s Dilemma game, pairs predominantly end up at the mutual

cooperation outcome. However, there is also a large number of pairs that end up at the mutual defection

outcome. In the Battle of the Sexes, most pairs alternate between the two pure-strategy Nash equilibria.

The latter outcome promotes efficiency and fainess. In the Stag-Hunt game, pairs predominantly end up

at the payoff-dominant Nash equilibrium, whereas in the Chicken game, most pairs coordinate on the

mutual conciliation outcome. The experimental data are included in Appendix A. (Figure 2 displays the

relative frequency of each payoff combination over the last 10 periods of game-play in the experiments of

[40].)

The findings in [40] confirm the trends detected by a vast number of much earlier studies (e.g., [48] and

[49]). Yet standard learning algorithms have had limited success in capturing the degree of cooperation

in the Prisoner’s Dilemma game and the alternation between the two pure-strategy Nash equilibria in the

Battle of the Sexes game ([2]). Along similar lines, [22] point out that “human agents exhibit higher social

intelligence and/or sensitivity than assumed by the basic learning models” (p. 61). [29] partially resolve

the problem by demonstrating that applying a restricted set of repeated-game strategies to a simple

reinforcement model of learning can account for some of the trends observed in the experiments. However,

several studies show that providing foregone payoff information affects learning, which suggests that

players do not simply reinforce chosen strategies. In fact, in certain settings, players are more sensitive

to foregone than to obtained payoffs (see [28]). An alternative approach could be to assume a mixture

of adaptive and sophisticated players. An adaptive player responds to either the payoffs earned or the

history of play, but does not anticipate how others are learning, whereas a sophisticated player rationally

best responds to his forecasts of all other behaviors.3 Furthermore, a sophisticated player is either myopic

or farsighted. A farsighted player develops multiple-period rather than single-period forecasts of others’

behaviors and chooses to “teach” the other players by selecting a strategy scenario that gives him the

highest discounted net present value.4 Yet such teaching models’ inability to both execute and anticipate

sophisticated behaviors, impedes the delivery of cooperation and conciliation in the Prisoner’s Dilemma

game and the Chicken game, respectively. Take, for instance, learning in the Prisoner’s Dilemma game.

Assume that there exists a population of agents, which consists of sophisticated players and adaptive

players á la [7]. An adaptive player always chooses to defect, regardless of his belief about the opponent’s

action, because defection is a strictly dominant action.5 On the other hand, a sophisticated player is able

to anticipate the effect of his own behavior on his opponent’s actions. However, this is not sufficient to

3The theoretical literature on sophisticated decision makers demonstrates that their presence may lead to Stackelberg
payoffs for the sophisticated player ([27]), may lead to the risk-dominant equilibrium as long as the sophisticated player is
sufficiently patient ([18]), or may force cooperation if the sophisticated player has limited foresight ([36]).

4In the generalized model of [7], cooperation emerges in p-beauty contests and repeated Trust games when sophisticated
players are able to teach their opponents that cooperation is beneficial (see, also, [11] and [32]).

5Cooperation in the Prisoner’s Dilemma cannot be taught, even if the adaptive player is using a pure reinforcement
learning model. For example, a reinforcement learner matched against a “Tit-For-Tat” strategist will, eventually, have
attractions that favor defection.
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drive a sophisticated player paired with an adaptive player to cooperative behavior because the adaptive

player will choose to defect, as defection is always his best response. Consequently, the sophisticated

player will also respond with defection, and, thus, the pair will lock themselves into an endless string of

defections. Analogous arguments hold for the Chicken game; that is, a teaching model with sophisticated

and adaptive players would predict the Nash equilibrium − not, the mutual conciliation outcome.

In this study, we seek to capture the effect of experience on cooperation and coordination by facilitating

learning among a subset of repeated-game strategies. In particular, players are assumed to consider

strategies that can be represented by finite automata having no more than two states. Such specification

of the strategy set improves predictions in two distinct ways. First, it allows for convergence to non-

trivial sequences, such as alternations in the Battle of the Sexes game. Second, the richer set of strategies

allows sophisticated strategic behavior, which incorporates not only punishments and triggers, but also

anticipation of punishments and triggers. As a result, the threat of punishment will drive a selfish player

to conform to cooperation in the Prisoner’s Dilemma game and to conciliation in the Chicken game.

3. Simulations and Goodness of Fit

According to the thought experiment, players play an infinitely-repeated game with perfect monitoring

and complete information. Similar to the framework of [29], we allow for two phases of learning. In the

pre-experimental phase, pairs of players engage in a lengthy process of learning in a fixed matching

protocol. Each simulation is broken up into epochs of 100 periods. The simulation runs until the average

epoch payoff of the pair has not changed by more than 0.01 from the previous epoch (in terms of Euclidean

distance) in 20 consecutive epochs. Convergence of the average payoff of a pair marks the end of the pre-

experimental phase (details on convergence are included in Appendix B).6 The pre-experimental phase

is used to develop the initial attractions that will be used in the experimental phase. In the first period

of the experimental phase, players are randomly rematched. Afterwards, pairs stay matched for 100

periods.7 The application of two phases serves as a partition between the knowledge subjects bring to

the experimental laboratory (knowledge accrued from subjects’ different experiences, due, perhaps, to

learning transferred from different games or due to introspection) and the actual game-play within the

laboratory.

We consider a simple goodness-of-fit measure to determine how far the predictions of a given model

are from the experimental data. In particular, we compare the average payoffs over the last 10 periods

of the experimental phase to the average payoffs over the last 10 periods of the experimental data. To

calculate the measure, we first discretize the set of possible payoffs by using the following transformation:

D (π) = ε
⌊π
ε

⌉
,

6The maximum number of periods for the pre-experimental stage was set at 50,000.
7Recall that in the experiments of [40], whose dataset we use to validate the predictions of the models, subjects were

instructed that the continuation probability for an additional period was 0.99; in expectation, the length of game-play is
100 periods, which matches the length of the computational simulations in the experimental phase.
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where π is the payoff, ε is the accuracy of the discretization and D(π) denotes the transformed payoff.

Note that the symbolic function b·e rounds the fraction to the nearest integer. For example, if ε = 0.5,

then the payoff pair (π1, π2) = (2.2, 3.7) would be transformed to (D (π1) , D (π2)) = (2, 3.5). We then

construct a vector (one for each model) consisting of the relative frequency of each of the transformed

payoffs given some ε. We do the same for the experimental data. To determine how far the predictions

of each model are from the experimental data, we calculate the Euclidean distance between the specific

model’s vector and the vector of the experimental data. If the predictions match the experimental data

perfectly, then the distance will have a value of 0.8 The maximum value of distance is
√

2 for each game.

This value is attained if only one payoff is predicted by the model, only one payoff is observed in the

experiment, and the two payoffs are different. Crucially, for a given model and discretization parameter ε,

we define the best goodness of fit model as the one whose parameter values minimize the sum of Euclidean

distances across the four games studied.

4. Action Learning

We implement the proposed methodology by building on three proven action-learning models: a self-

tuning Experience Weighted Attraction model ([30]), a γ-Weighted Beliefs model ([9]), and an Inertia,

Sampling and Weighting model ([20]).9 Henceforth, for brevity, we refer to the three models by their

acronyms: STEWA, γ-WB and I-SAW, respectively. In Table 2, we summarize the basic characteristics

of each model, describe the parameters used in each and highlight the modifications implemented to

facilitate operability of the models with repeated-game strategies (a detailed description of each model

can be found in Appendix C).

To address criticisms that the prototype model had “too” many free parameters, the STEWA model

builds on the Experience Weighted Attraction model of [6], fixing some parameters at plausible values and

replacing others with functions of experience that self-tune. The γ-WB model is a simple belief-learning

model that includes Cournot best-response ([14]) and fictitious play ([4]) as special cases. Finally, I-SAW

is an instance-based model that captures behavioral regularities that have been observed in studies of

individual decisions from experience and Market Entry games.10 In each period, a player enters one of

8There are many standard statistical procedures for comparing models. For example, the Mean Squared Distance (MSD)
criterion calculates the average squared distance between the predicted choice proportion and the observed choice proportion
in the relevant game. The lower the MSD, the closer the choice predictions of the model to the observed behaviors. Our
measure is similar to the MSD criterion, although the MSD criterion requires discrete payoff choices; thus, we first need
to discretize the set of possible payoffs before using the Euclidean metric. Another popular one is the Akaike Information
Criterion, which penalizes theories with more degrees of freedom. Given that the comparison in this study is within models
and not, across models, the simple criterion chosen suffices.

9We raise the bar of assessment high enough by using leading models, which have been quite successful in documenting
subjects’ behavior. For instance, [10] noted recently that “the good performance of the self-tuning EWA on the individual
level is remarkable” (p. 60). Moreover, the γ-WB model was documented to track players’ behavior well across a multitude of
games and information conditions (see [9]). Finally, I-SAW was the best baseline in the Market Entry Prediction Competition
of [20].

10The behavioral regularities documented include: the payoff variability effect, high sensitivity to foregone payoffs, under-
weighting of rare events, strong inertia and surprise-triggers-change, the very recent effect, individual differences (see [20]
and [22]).
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Self-Tuning Experience Weighted
Attraction

γ-Weighted Beliefs Inertia, Sampling and Weighting

Reference [30] [9] [20]

Acronym STEWA γ-WB I-SAW

Description This model is a hybridized workhorse of
adaptive learning combining elements of
belief learning and reinforcement learn-
ing. Each action in a player’s action set
has an attaraction, which is updated at
the end of each period. An action is
selected via the logistic choice function,
where actions with higher attractions are
disproportionately more likely to be se-
lected.

Initially, a player’s beliefs about the op-
ponent’s actions are formulated by dis-
counting previous play with parameter
γ. Once the beliefs are formulated, the
expected payoff of each potential action
is calculated. Finally, a player selects
an action via the logistic choice function,
where actions yielding higher expected
payoffs are disproportionately more likely
to be selected.

This model is an instance-based model,
which allows for three response modes:
exploration, inertia and exploitation. In
each period, a player enters one of the
modes with certain probabilities. In the
exploration mode, an action is randomly
chosen. In the inertia mode, the last
action is repeated with some probability
that depends on surprise. Finally, in the
exploitation mode, a player calculates a
weighted average of payoffs (based on
formulated beliefs) to select the action
with the highest value.

Parameters • λ - logistic function parameter that
determines sensitivity when choosing
from attractions.

• λ - logistic function parameter that
determines sensitivity when choosing
from attractions.
• γ - discounting parameter for previous
actions when determining beliefs.

• pA - probability of choosing action A
when exploring.
• εi - probability that an agent explores
in a given period.
• πi - used to determine the probability
that an agent has inertia in a given
period.
• µi - number of samples taken by an
agent from the history when determin-
ing the sample mean of the estimated
subjective value.
• ρi - the probability that an agent
takes his opponent’s last action when
determining the sample mean of the
estimated subjective value.
• ωi - the fraction of weight put on the
grand mean in the estimated subjective
value.

Proposed
Modifications

• Replace actions with strategies.
• Use pre-experimental stage to develop
initial attractions.

• Replace actions with strategies.
• Use pre-experimental stage to develop
initial attractions.

• Replace actions with strategies.
• Use pre-experimental stage to develop
initial attractions.
• Endogenize probability of inertia,
which reduces model by one parameter
(π).
• Assume that a player chooses randomly
over all strategies during exploration,
which reduces model by one parameter
(pA).

Table 2: Models
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Figure 2: Action-Learning Models in the Experimental Phase & Experimental Data

Notes: We validate the predictions of the three action-learning models in the experimental phase with human data from

the experiments of [40]. The computational simulations and the experimental results with human subjects show the relative

frequency of each payoff combination over the last 10 periods of game-play. The relative frequency of a payoff combination

is denoted by a circle located on the coordinates that correspond to that combination; the larger the circle, the higher the

(relative) frequency of that combination. We also display the set of feasible payoffs.
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three response modes (exploration, inertia or exploitation) with certain probabilities. The exploration

mode enables a player to experiment with different actions, whereas the inertia mode repeats a player’s

most recent action. Finally, in the exploitation mode, a player calculates a weighted average of payoffs

(based on formulated beliefs) to select the action with the highest value. All three models assume reliance

on previous experiences, which have been documented to capture subjects’ behavior better than models,

such as reinforcement learning that does not assume memory of and/or reliance on specific experiences

(see [20]).

In Figure 2, the predictions of the three action-learning models are validated with the experimental

data from [40]. We display the plots for the parameters that led to the best goodness of fit across all

games.11 The prevalent outcome in the experimental data in the Prisoner’s Dilemma game is for subjects

to mutually cooperate, although there are also a large number of subjects who end up at the mutual

defection outcome. The action-learning models in Figure 2 only predict mutual defection. Furthermore,

in the Battle of the Sexes game, the prevalent outcome in the experimental data is alternations between

the two pure-strategy Nash equilibria. A small number of subjects end up at one of the two symmetric

pure-strategy Nash equilibria, and a few subjects end up at the (1.0, 1.0) payoff. The action learning

STEWA and γ-WB models only predict convergence to one of the two symmetric pure-strategy Nash

equilibria. The I-SAW model with action learning predicts neither convergence to one of the two pure-

strategy symmetric Nash equilibria nor alternations between the two pure-strategy Nash equilibria. In

the Stag-Hunt game, the prevalent outcome is for subjects to converge to the payoff-dominant Nash

equilibrium. Figure 2 shows that only the action learning STEWA is able to predict clearly that pairs

will converge to such outcome. The other two action-learning models predict that only a small number

of pairs will end up at the payoff-dominant Nash equilibrium. Finally, none of the action-learning models

in Figure 2 is able to predict that a significant number of pairs will converge to the mutual conciliation

outcome in the Chicken game. (The goodness-of-fit results for the experimental phase of the three

action-learning models are shown in Table 3.)

5. Strategy Learning

To simplify exposition, we start with some notation. The stage game is represented in standard

strategic (normal) form. The set of players is denoted by I = {1, ..., n}. Each player i ∈ I has an action

set denoted by Ai. An action profile a = (ai, a−i) consists of the action of player i and the actions of

the other players, denoted by a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ A−i. In addition, each player i has a

11To determine the parameters of the model that fit the data best, we ran a grid search over different parameter values.
The parameters for each of the action-learning models are described in Table 2. For the single parameter λ in the action
STEWA model, we performed a grid search over λ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6}. The action γ-WB model has
two parameters: γ and λ. We performed a grid search over γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and λ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.
Finally, the action I-SAW model has six parameters: ε, π, ω, ρ, pA, and µ. To find the best goodness of fit for the action
I-SAW model, we conducted a grid search over the suggested parameter range in [20]. The parameters searched over were
ε ∈ {0.2, 0.24, 0.3}, π ∈ {0.4, 0.5, 0.6}, ω ∈ {0.6, 0.7, 0.8}, ρ ∈ {0.1, 0.2, 0.3}, pA ∈ {0.4, 0.5, 0.6} and µ = 3. The parameters
that maximized goodness of fit were λ = 1.5 for STEWA; γ = 0.1 and λ = 3 for γ-WB; and ε = 0.2, π = 0.6, ω = 0.8, ρ =
0.1, pA = 0.6 and µ = 3 for I-SAW.
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real-valued, stage-game, payoff function gi : A → R, which maps every action profile a ∈ A into a payoff

for i, where A denotes the cartesian product of the action spaces Ai, written as A ≡
I
×
i=1
Ai. In the

infinitely-repeated game with perfect monitoring, the stage game in each time period t = 0, 1, ... is played

with the action profile chosen in period t publicly observed at the end of that period. The history of

play at time t is denoted by ht = (a0, ..., at−1) ∈ At, where ar = (ar1, ..., a
r
n) denotes the actions taken in

period r. The set of histories is given by

H =

∞⋃

t=0

At,

where we define the initial history to the null set A0 = {∅}. A strategy si ∈ Si for player i is,

then, a function si : H → Ai, where the strategy space of i consists of Ki discrete strategies; that

is, Si = {s1
i , s

2
i , ..., s

Ki
i }. Furthermore, denote a strategy combination of the n players except i by

s−i = (s1, ..., si−1, si+1, ..., sn). The set of joint-strategy profiles is denoted by S = S1 × · · · × Sn. Each

player i has a payoff function πti : S → R, which represents the average payoff per period when the

joint-strategy profile is played for t periods.

5.1. Generalized Repeated-Game Strategy Space

Our motivation to use generalizable rules is twofold. First, as highlighted in the Introduction, a

large number of strategies is impractical for updating under most existing learning models. Instead,

generalizable rules require a relatively small strategy set, which may implicitly encompass a larger space

(see, for instance, Stahl’s rule learning). Second, we want to reflect elements of bounded rationality

and complexity as envisioned by [52]. Bounded rationality suggests that a player may not consider all

feasible strategies, but, instead, limit himself to less-complex strategies. Thus, we propose a generalized

repeated-game strategy space where players’ strategies are implemented by a type of finite automaton.12

The specific type of finite automaton used here is a Moore machine. A Moore machine for player i,

Mi, in a repeated game G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, q
0
i , fi, τi) where Qi is a finite set

of internal states of which q0
i is specified to be the initial state, fi : Qi → Ai is an output function

that assigns an action to every state, and τi : Qi × A−i → Qi is the transition function that assigns a

state to every two-tuple of state and other player’s action. This approach reduces the set of theoretically

possible strategies to a manageable size. To see this, note that the machines make state transitions only

in response to their opponents’ actions − not to their own actions.13 In Figure 3, we depict a player’s

strategy set, which consists of one-state and two-state automata. A more detailed exposition on finite

automata can be found in Appendix D.

12Using finite automata as the carriers of agents’ strategies was first suggested by [3]. The first application originated in
the work of [44], who investigated a finitely-repeated-game model in which the pure strategies available to the agents were
those that could be generated by machines utilizing no more than a certain number of states.

13Such automata are called full automata. On the other hand, exact automata do not have this restriction (as in [37]).
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Figure 3: One-State and Two-State Automata
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5.2. Mapping Between Histories and Repeated-Game Beliefs

Strategy-learning models face a tough impediment in that beliefs are not directly observable. In

the context of our proposed framework, we indicate next how beliefs are specified.14 To determine the

beliefs, let h (t1, t2) =
(
at1 , at1+1, . . . , at2

)
for t1 ≤ t2 be the truncated history between periods t1 and t2

(all inclusive) and h (t, t− 1) = ∅ be the empty history. Also, let Ti(χ) =
∑χ

j=1 Ti(j) be the total number

of periods at the end of player i’s block χ, where Ti(j) is the jth block’s length for player i. Then, strategy

s−i is consistent with hTi(χ) for the last t′ periods if

s−i
(
h
(
Ti(χ)− t′, Ti(χ)− t′ − 1 + r

))
= a

Ti(χ)−t′+r
−i for r = 0, . . . , t′ − 1.

Define the fitness function F : S−i × N→ [0, Ti(χ)] as15

F (s−i, χ) = max
{
t′|s−i is consistent with hTi(χ) for the last t′ periods

}
.16

Define the belief function B : S−i × N→ [0, 1] as

B(s−i, χ) =
F(s−i, χ)∑

r∈S−i

F(r, χ)
,

which can be interpreted as player i’s belief that the other player was using repeated-game strategy s−i

at the end of block χ. Once the beliefs over repeated-game strategies have been determined, player i can

calculate his expected (foregone) payoff. The expected (foregone) payoff for player i of repeated-game

strategy j over the χth block is given by

Eji (χ) =
∑

s−i∈S−i

π
Ti(χ)
i (sji , s−i|h(s−i,χ)) · B(s−i, χ),

where s−i|h is the continuation strategy induced by history h and

h (s−i, χ) = h (Ti(χ)−F (s−i, χ) , Ti(χ)− 1)

is the longest history such that s−i is consistent with hTi(χ).

14Our specification of beliefs is different from that in [11]. In that study, a sophisticated lender holds a belief about the
overall fraction of honest borrowers. Once the sophisticated lender chooses loan, his belief is updated in a Bayesian manner
using borrower’s choice probabilities. Our approach is more generalizable compared to the one advocated in that model,
which is context-specific.

15We consider alternative fitness specifications in Appendix F.2.
16In the context of finite automata, let hti(χ) be player i’s action in the tth period of block χ, and s−i =

(
Q−i, q

0
−i, f−i, τ−i

)
be a potential automaton for player −i. We say automaton s−i is consistent with h(χ) for the last t′ periods if, according to
the history, it is possible that the other player played automaton s−i in the last t′ periods and, given player i’s most recent
action, the proposed automaton is in the starting state. Formally, automaton s−i is consistent with h(χ) for the last t′ periods
if there exists some state qt ∈ Q−i such that ht−i(χ) = f−i

(
qt
)

and qt+1 = τ−i
(
qt, hti(χ)

)
for all Ti(χ)−t′+1 ≤ t ≤ Ti(χ) and

qTi(χ)+1 = q0. Note that our approach to fit action profiles onto repeated-game strategies implemented by finite automata
is similar to the approach [19] used to infer subjects’ strategies in the repeated Trust game.
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5.3. Asynchronous Updating of Repeated-Game Strategies

Our formulation relaxes the synchronicity-of-updates constraint between the players, which is stan-

dard in the traditional action-learning models; instead, players update their repeated-game strategies

with the completion of a block of periods. The basic idea is that the probability of updating the strategy

set depends on the expected block length, which is calculated at the end of each period. A long expected

block length implies that a player is expecting to implement the specific repeated-game strategy for a

longer time than when the player has a short expected block length. In practice, when a player has a

long expected block length, it means that the probability of updating his strategy set (or the probability

of terminating the block) at the end of a period is lower than when the player has a short expected block

length. The probability that player i updates his strategy set in period t, 1
Pti

is, therefore, determined

endogenously via the expected length of the block term, Pti , which is updated recursively; that is,

Pti = Pt−1
i − 1

Pt−1
i

∣∣∣ 1
t−t(χ(t))

∑t−1
s=t(χ(t)) gi(a

s
i , a

s
−i)− E

si(χ(t))
i (χ(t))

∣∣∣
ḡ − g ,

where t(χ) is the first period of block χ, and χ(t) is the block corresponding to period t. In addi-

tion, ḡ = maxa1,a2,j gj (a1, a2) is the highest stage-game payoff attainable by either player, and g =

mina1,a2,j gj (a1, a2) is the lowest stage-game payoff attainable by either player. The normalization by
1
ḡ−g ensures that the expected block length is invariant to affine transformations of the stage-game payoffs.

The variable Pti begins with an initial value P0
i . This prior value can be thought of as reflecting pre-

game experience, due to either learning transferred from other games or (publicly) available information.

The law of motion of the expected block length depends on the absolute difference between the actual

average payoff thus far in the block and the expected payoff of strategy si. The expected payoff for player

i, Esi(χ(t))
i (χ(t)), is the average payoff that player i expects (anticipates) to receive during block χ(t)

and is calculated at the beginning of the block.17 The difference between actual and expected payoff is,

thus, a proxy for (outcome-based) surprise. If a player receives a payoff similar to his expectations, then

surprise is low; hence, the probability of updating the strategy set increases by a relatively small amount.

However, if a player receives a payoff that is drastically different from his expectations, then surprise is

high; hence, the probability of updating the strategy set increases by a relatively large amount. As [22]

indicate, surprise triggers change; that is, inertia decreases in the presence of a surprising outcome.18

In addition, we impose a qualitative control on the impact of surprise on the expected block length.

Multiplying the absolute difference by 1
Pt−1
i

ensures that surprise has a smaller impact on the expected

block length when the expected block length is long, than when it is short.

An alternative approach is to impose simultaneous strategy updates for all players. We feel that such

a method, though substantially simpler, would constitute a major shortcoming of the proposed model

17Notice that the expected payoff is taken over the expected block length and no more. In line with [34] and [35], our
approach assumes that players have a limited ability to forecast the future. Naturally, the average payoff is obtained over the
length of the foresight. Furthermore, though the expected block length does not enter directly the calculation of a player’s
choice probabilities, it does so indirectly via the expected payoff.

18Note that this gap-based abstraction can be justified by the observation that the activity of certain dopamine related
neurons is correlated with the difference between the expected and actual outcomes (see [50] and [8]).
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and its power as a behavioral model. First, such a direction would imply that players would enter some

sort of (possibly illegal!) contract before commencing the game. Second, such a contract would need to be

binding; otherwise, why would a player adhere to it? For instance, a player whose strategy has not been

performing well, may have a change of heart and decide to update prematurely. Simultaneous strategy

updates would disallow such a change of strategy. For these reasons, we prefer to forgo simplicity in order

to present a behavioral model, which is general and does not require unrealistic modeling assumptions.

(Nevertheless, we consider an approach with simultaneous strategy updates in Appendix F.1 to highlight

the value-added of the proposed approach with asynchronous updating of repeated-game strategies.)

6. Results

6.1. Strategy-Learning Models in the Experimental Phase

The results at the end of the pre-experimental phase parallel the knowledge that subjects bring to

the laboratory before the actual game-play begins, while the experimental phase parallels the actual

game-play. In the first period of the experimental phase, players are randomly rematched. Afterwards,

pairs stay matched for 100 periods. In Figure 4, the predictions of the three strategy-learning models

are validated with the experimental data. We display the plots for the parameters that led to the best

goodness of fit across all games.19 The results displayed are averages taken over the last 10 periods

of game-play. Subjects predominantly cooperate in the Prisoner’s Dilemma game. However, a large

number of subjects end up at the mutual defection outcome. The strategy-learning models in Figure

4 are able to deliver both; that is, they predict convergence to the mutual cooperation outcome, as

well as convergence to the mutual defection outcome. Strategy-learning models support sophisticated

behaviors, such as punishments for non-conformity to the cooperative outcome that drive many pairs to

select strategies that converge to the cooperative outcome. We also note that all three models predict

that a small number of pairs will end up at the symmetric payoff (3.0, 1.5). The latter payoff is not

supported by the experimental data yet arises in the simulations when Automaton 2, which implements

the “Always Defect” strategy, is paired with Automaton 5, which implements the “Win-Stay, Lose-Shift”

strategy. Such a pair alternates between (B,A) and (B,B). In the Battle of the Sexes game, subjects

predominantly alternate between the two pure-strategy Nash equilibria. A small number of subjects end

up at one of the two symmetric pure-strategy Nash equilibria and a few subjects end up at the (1.0, 1.0)

19The procedure for the simulations of the strategy-learning models closely matches that for the action-learning models
presented earlier. The goodness of fit measures how close the last 10 periods of the experimental phase are to the experimental
data using the approach described in Section 3. Across all strategy-learning models, the initial value of P0

i is set to 100 at
the beginning of both the pre-experimental and the experimental phase. To determine the parameters of the model that
fit the data best, we ran a grid search over different parameter values. For the one-parameter strategy STEWA model, the
grid search covered λ ∈ {2, 2.75, 3, 3.25, 3.5, 4, 5, 6, 9, 12}. For the strategy γ-WB model with parameters γ and λ, the grid
search covered γ ∈ {0.6, 0.7, 0.75, 0.8, 0.9} and λ ∈ {12, 15, 18, 21, 22, 23, 23.5, 24, 24.5, 25, 26, 27, 30}. Finally, as described in
Table 2, the strategy I-SAW model has only four parameters, compared to the six parameters of the action I-SAW model.
The grid search was, therefore, performed over εi ∈ {0, 0.0005, 0.001}, ρi ∈ {.7, .9, 1}, ω ∈ {0.1, 0.3, .5, 0.7} and µi = 3. The
parameters that maximized goodness of fit for the strategy-learning models were λ = 3 for STEWA; γ = 0.7 and λ = 23 for
γ-WB; and ε = 0, µ = 3, ω = 0.1 and ρ = 1 for I-SAW.
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Figure 4: Strategy-Learning Models in the Experimental Phase & Experimental Data

Notes: We validate the predictions of the three strategy-learning models in the experimental phase with human data from

the experiments of [40]. The computational simulations and the experimental results with human subjects show the relative

frequency of each payoff combination over the last 10 periods of game-play. The relative frequency of a payoff combination

is denoted by a circle located on the coordinates that correspond to that combination; the larger the circle, the higher the

(relative) frequency of that combination. We also display the set of feasible payoffs.
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payoff. These trends are supported by all three strategy-learning models. The ability of the strategy-

learning models to predict convergence to alternations between the two pure-strategy Nash equilibria

can be attributed to the richer specification of strategies. We also note that the models predict that

a small number of pairs will end up at the symmetric payoff (2.5, 1.5). The latter payoff occurs in the

simulations when Automaton 2, which implements the “Always B” strategy, is paired with Automaton

24, which switches actions every period. Such a pair alternates between (B,B) and (B,A). Even though

the experimental data do not support the latter pair, there are points in the experimental dataset that

end up quite close. In the Stag-Hunt game, the prevalent outcome is for subjects to converge to the

payoff-dominant Nash equilibrium. All three strategy-learning models are able to make crisp predictions

on the convergence to the payoff-dominant Nash equilibrium, as shown in Figure 4. In the Chicken

game, subjects converge to the mutual conciliation outcome, which the three strategy-learning models

also predict.

The goodness-of-fit results for the experimental phase are shown in Table 3. The results displayed

pertain the parameter values that minimize the total Euclidean distance across all four games. The table

shows that the strategy-learning models approximate subjects’ behavior substantially better than their

respective action-learning models.20 In particular, all three strategy-learning models do unequivocally

better across all four games relative to their action learning counterparts.

STEWA γ-WB I-SAW

Game Action Strategy Action Strategy Action Strategy

Prisoner’s Dilemma 0.532 0.228 0.535 0.237 0.486 0.257

Battle of the Sexes 0.642 0.126 0.580 0.153 0.531 0.455

Stag-Hunt 0.191 0.165 0.782 0.122 0.614 0.140

Chicken 0.698 0.326 0.679 0.381 0.773 0.221

Total 2.064 0.846 2.575 0.893 2.404 1.073

Table 3: Strategy Learning vs. Action Learning

Notes: We compare the three models with repeated-game strategies and the respective models with action learning to

the experimental data for an ε = 0.5. The columns indicate the Euclidean distance between the experimental data and

the respective predictions of the three models across each game. The red columns indicate the distance between the

experimental data and the predictions of the action-learning models, whereas the blue columns indicate the distance between

the experimental data and the predictions of the strategy-learning models. If the predictions matched the data perfectly,

then the distance in a game would have been 0. Note that to calculate each model’s total Euclidean distance, we located

the parameters that led to the best goodness of fit (minimum total Euclidean distance) across all four games.

20This finding is robust to all values of ε. Figure G.12 in Appendix G displays the minimized total Euclidean distance for
the entire range of ε across the four games.
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6.2. Importance of Pre-Experimental Phase

One may wonder whether developing initial attractions via the pre-experimental phase is important

in driving the results highlighted in the experimental phase. We examine the necessity of the pre-

experimental phase in this subsection. In particular, we run a baseline experimental phase in which

players do not participate in the pre-experimental phase, but, rather, start the experimental phase

without any experience. The results are displayed in Table 4. The first row is reproduced from Table

3 and indicates the total Euclidean distance between the experimental data and the predictions of the

strategy-learning models for the last 10 periods. The second row indicates the total Euclidean distance

between the experimental data and the predictions of the models when there is no pre-experimental

phase. All results are based on a discretization parameter ε = 0.5. The total Euclidean distances without

the pre-experimental phase are 1.669, 1.603, and 1.292 for STEWA, γ-WB, and I-SAW, respectively. On

the other hand, the total Euclidean distances with the pre-experimental phase are 0.846, 0.893 and 1.073

for STEWA, γ-WB, and I-SAW, respectively. Therefore, in the simulations without the pre-experimental

phase, the models’ fit is relatively poorer, which necessitates the development of initial attractions via

the pre-experimental phase.

STEWA γ-WB I-SAW

With Pre-Experimental Phase 0.846 0.893 1.073

Without Pre-Experimental Phase 1.669 1.603 1.292

Table 4: Effect of Pre-Experimental Phase on Fit

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the respective

predictions of the models in the experimental phase across all four games. The first row is reproduced from Table 3 and

indicates the total Euclidean distance between the experimental data and the predictions of the strategy-learning models for

the last 10 periods. The second row indicates the total Euclidean distance between the experimental data and the predictions

of the strategy-learning models when there is no pre-experimental phase. All results are based on a discretization parameter

ε = 0.5. If the predictions matched the data perfectly, then the distance would have been 0.

6.3. Inferred Rules of Behavior

The extension from actions to a simple class of repeated-game strategies significantly improves the

models’ predictions in the games studied. It is also informative to compare the repeated-game strategies

predicted by the models with the inferred repeated-game strategies in the experimental data. However,

inferring repeated-game strategies either from the simulated or experimental data is inhibited by two

serious hurdles. First, the set of possible strategies in repeated games is infinite. Second, only one

finite history is observed and, therefore, no information is derived with respect to what would have been

played under other histories. Identifying, ex ante, a subset of repeated-game strategies overcomes the

first problem. To overcome the second problem, we use a simple approach. We focus on specific rules
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of behavior to see what percentage of the simulated (actual) histories could have been generated by the

specific rule over the last 10 periods of the interaction in the experimental phase (experiments).21 Given

that our focus is on the last 10 periods of the interaction, rather than focusing on the 26 one-state and

two-state automata, we consider the 15 corresponding rules of behavior. A rule of behavior is essentially

an automaton without information about the starting state − that is, a three-tuple (Qi, fi, τi) where Qi,

fi and τi are defined as before.22 The results are displayed in Figure 5. Each rule of behavior corresponds

to either one or two automata. The names of the rules of behavior are based on either the conventional

terminology or on a brief description of the behavior. For simplicity, in the text, the rules are described

by the corresponding automaton numbers from Figure 3 − i.e., rule of behavior (4,19) corresponds to

automata 4 and 19. Furthermore, rules of behavior that do not capture at least 40% of either the

simulated histories or the actual histories in any of the four games are omitted.23 In addition, recall that

(A,A) is the cooperative outcome in the Prisoner’s Dilemma, Stag-Hunt, and Chicken games, whereas

in the Battle of the Sexes game, the cooperative outcome is alternations between the two pure-strategy

Nash equilibria ((A,B) and (B,A)).

It is important to note the remarkable ability of the rules of behavior to fit the experimental data.

A single rule of behavior is able to explain the play of 80%, 62%, 95%, and 79% of the subjects in the

Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt and Chicken experiments, respectively. This provides

strong evidence to support the claim that subjects are playing strategies leading to histories similar to

the histories generated by the finite automata. In addition, we also observe a clear pattern between the

simulated data and the experimental data. Rules of behavior that are able to explain a high percentage

of the simulated data, are also able to explain a high percentage of the experimental data. Similarly,

rules of behavior that explain a low percentage of the simulated data explain a low percentage of the

experimental data. While this does not ensure that the inferred rules of behavior used by human subjects

are the same as those inferred in the simulations, it does provide additional evidence that the rules that

emerge in the simulations capture well the behavior of subjects in the laboratory.

[16] resolve the issue of inferring the repeated-game strategies of the experimental subjects in the

infinitely-repeated Prisoner’s Dilemma game by asking them to directly design repeated-game strategies.

The constructed repeated-game strategy of each subject is then deployed to play the game in lieu of

himself. Dal Bó and Fréchette find that subjects chose common cooperative repeated-game strategies,

such as “Tit-For-Tat” and “Grim-Trigger.” Figure 5 shows that in the Prisoner’s Dilemma game, the two

rules of behavior that attained the highest percentages in the experimental data were (4,19) and (6), each

21Previous studies overcame the second problem using either the method of strategy elicitation ([51] and [16]) or direct
inference ([19] and [1]). These methods are not applicable here, in part because strategies were not elicited in the experiments
of [40]. Furthermore, the continuation probability in the experiments of [40] was too high to allow for direct inference in
the context suggested, for instance, by [19]. In particular, in the latter study, the continuation probability was 0.8, which
implies an expected 5 periods of game-play. On the other hand, the continuation probability in the experiments of [40] was
0.99, which implies an expected 100 periods of game-play. Consequently, unless errors are allowed, it is impractical to fit
such long sequences of action profiles onto repeated-game strategies. Thus, we truncate the sequence of action profiles to
retain the last 10 action profiles in the sequence.

22An alternative interpretation is that a rule of behavior reflects recognition of a pattern (see [53] and [54]).
23Rules of behavior (8,22), (13,26), (9,23) and (7,21) are omitted from Figure 5.

19



A

B

B

A

A
q1

B
q2

4,19

Tit-For-Tat

A

B

AB

A
q1

B
q2

6

Grim-Trigger

A

B

AB

A
q1

B
q2

3,18

AA or B Once

AB B

A

A
q1

B
q2

16

BA Triggers A

A

B

A

B

A
q1

B
q2

5,20

Win-Stay,Lose-Shift

AB A

B

A
q1

B
q2

17

BB Triggers A

AB

AB

A
q1

B
q2

1,15

Quick B, Then A

AB

B

A

A
q1

B
q2

12,25

BB or A Once

B

A

AB

A
q1

B
q2

10

AA Triggers B

AB

AB

A
q1

B
q2

2,14

Quick A, Then B

AB

AB

A
q1

B
q2

11,24

Alternations

Behavior
Equivalent
Automata

Prisoner’s
Dilemma

Battle of
the Sexes

Stag-Hunt Chicken

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

EWA γ-WB

I-SAW Human Subjects

Figure 5: Inferred Rules of Behavior

Notes: The first column indicates the rule of behavior, whereas the second column indicates equivalent automata, in the sense

that they implement the same underlying behavior (as displayed in Figure 3) and either the rule’s name or a brief description

of the rule. The remaining four columns (one for each game) show with bar charts the percentage of the simulated (actual)

histories that could have been generated by the specific rule over the last 10 periods of the interaction in the experimental

phase (experiments). The rules of behavior are sorted in order of prevalence in the experimental data across all four games.

Rules of behavior that do not capture at least 40% of either the simulated histories or the actual histories in any of the four

games are omitted from the Figure.
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rule with 80%. The first rule of behavior implements a “Tit-For-Tat” strategy and the second rule the

“Grim-Trigger” strategy. The same two rules are prevalent in the three strategy-learning models. The rule

of behavior corresponding to “Tit-For-Tat” is consistent with 63%, 62% and 59% of the STEWA, γ-WB

and I-SAW, respectively. Even better, the rule of behavior corresponding to “Grim-Trigger” is consistent

with 76%, 73% and 77% of the STEWA, γ-WB and I-SAW, respectively. These results provide further

evidence that the simulations are capturing rules of behavior similar to those applied in the laboratory.

In the Battle of the Sexes game, the four most prevalent rules of behavior in the experimental data are:

(3,18), (4,19), (11,14) and (12,25). The STEWA and γ-WB models capture well the exact same four

rules of behavior, whereas the I-SAW model also displays high percentages in (6) and (10). Furthermore,

similar to the Prisoner’s Dilemma game, in the Stag-Hunt and Chicken games, rules of behavior (4,19)

and (16) display the highest percentages. The strategy-learning models in addition to the latter two rules

of behavior, also infer rules (1,15), (3,18), (5,20), (16) and (17).

Overall, the four rules of behavior that emerge as the most prevalent are (4,19), (6), (3,18) and

(16). As mentioned earlier, (A,A) is the cooperative outcome in all games except in the Battle of the

Sexes game, in which alternations between the two pure-strategy Nash equilibria ((A,B) and (B,A)) is

the cooperative outcome. Given this particularity of the Battle of the Sexes game, the discussion that

follows pertains more closely to the three games that share the same cooperative outcome: the Prisoner’s

Dilemma game, the Stag-Hunt game and the Chicken game. We shed some light on the composition

of the top four rules by discussing two summary measures. The first summary measure is cooperation

reciprocity, defined as the proportion of (accessible) states that respond to an opponent’s cooperation

with cooperation. The second summary measure is defection reciprocity, defined as the proportion of

(accessible) states that respond to an opponent’s defection with a defection. The cooperation reciprocity

of rules (4,19), (3,18) and (16) is 1; that is, the three rules always respond with a cooperative action to

the opponent’s cooperative action. Rule of behavior (6), which implements the “Grim-Trigger” strategy,

has a cooperation reciprocity of 0.5. Clearly, all four rules do try to establish cooperation. They differ,

however, in terms of how they respond to an opponent’s defection. Rules (4,19) and (6) have a defection

reciprocity of 1 (i.e., if the opponent defects, then, the two rules always respond with a defection), whereas

rules of behavior (3,18) and (16) have a defection reciprocity of 0.5. Rule of behavior (3,18) punishes the

opponent once, and rule of behavior (16) defects as long as the opponent defects, but once the opponent

chooses a cooperative action, then, it reverts to unconditional cooperation.

7. Conclusion

We propose a methodology to facilitate operability of belief-learning models with repeated-game

strategies. The methodology proposed is generalizable to a broad class of repeated games. We implement

it by building on three proven action-learning models: a self-tuning Experience Weighted Attraction

model, a γ-Weighted Beliefs model, and an Inertia, Sampling and Weighting model. Additionally, their

predictions with repeated-game strategies are validated with data from experiments with human subjects

across four, symmetric 2× 2 games: Prisoner’s Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken.
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We find that the models with repeated-game strategies approximate subjects’ behavior substantially

better than their respective action-learning models. Furthermore, the inferred rules of behavior in the

experimental data coincide with those inferred in the strategy-learning models. More specifically, in the

Prisoner’s Dilemma, Stag-Hunt, and Chicken, rules of behavior “Tit-For-Tat” and “Grim-Trigger” emerge

as the most prevalent in the experimental dataset and the simulations, whereas in the Battle of the Sexes,

cooperative rules implementing alternation between the two pure-strategy Nash equilibria emerge as the

most prevalent in the experimental dataset and the simulations. Many in vivo experimental studies have

demonstrated that even though subjects make a genuine effort to establish cooperation, they will abandon

doing so if an unfavorable outcome is attributed to the other party’s greed.24 The most prevalent rules

of behavior inferred in the simulated and experimental data corroborate this finding. More specifically,

both “Tit-For-Tat” and “Grim-Trigger” are, on the one hand, cooperative, but, on the other hand, they

are also unforgiving and relentless punishers of defections.

Ideally, the success of the proposed methodology would have to be evaluated across two important

dimensions. First, it should be tested across a much broader array of games and models. Second, it

should be tested in more-complex environments with looser tight strategy-complexity constraints. In this

study, we have focussed on capturing subjects’ behavior in simple games, which required incorporating

elements of bounded rationality via tight complexity constraints. However, there exists a plethora of

situations in which the agents’ strategies might be more complicated. In such cases, our methodology

would need to be revised to allow the use of automata carrying more than two states in order to capture

more-sophisticated strategies. It is important to highlight that as the number of repeated-game strategies

considered increases, the weight placed on a particular strategy will decrease. Consequently, for a large

enough set of repeated-game strategies, the weight for any given strategy will approach zero. However,

the fitness function proposed allows repeated-game strategies with similar characteristics to be grouped

together, and though the weight on each strategy will indeed be small, the weight on the class of strategies

will still be significant. For example, there may be many repeated-game strategies that are reciprocal

cooperators in the Prisoner’s Dilemma game, and though the weight on each individual strategy could

be small, the weight on the class of reciprocal cooperating strategies would still be large enough to make

a player want to continue cooperating. Having said this, we do acknowledge that a fruitful direction for

future research would be to reduce the centrality of finite automata as the carriers of agents’ strategies.25

Finally, another direction for future research would be to allow automata to commit errors. In this study,

we assumed that agents’ strategies were implemented by error-free automata. Agents, in real life, engage

in actions that are constrained by the limitations of human nature and the surrounding environment.

Thus, it would be interesting to test the susceptibility of the results to small amounts of perception and

24[17] point out that even the mere suspicion of the possibility of exploitation in the infinitely-repeated Prisoner’s Dilemma
game induces subjects to engage in a kind of defensive “stinginess” that impedes the emergence of cooperation. More recently,
[15] provide compelling experimental evidence to suggest that even in treatments where cooperation can be supported in
equilibrium, the level of cooperation may remain at low levels even after significant experience is obtained. The authors
conclude that “these results cast doubt on the common assumption that agents will make the most of the opportunity to
cooperate whenever it is possible to do so in equilibrium” (p. 412).

25For instance, the cut-off strategies of [26] cannot be operationalized by finite automata.
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implementation error.
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Appendix A. Experimental Data

[40] provide experimental data on the four games reported in Figure 1. The experimental sessions were run at

the Vernon Smith Experimental Economics Laboratory at Purdue University. Subjects interacted on computers

using an interface that was programmed with the z-Tree software ([25]). Subjects’ final payoffs consisted of the sum

of their earnings from all periods of the experiment. With the completion of the experiment, subjects were paid in

private their cash earnings. The average payoff was $16.85. The game-play consisted of a fixed matching protocol.

The continuation probability for an additional period was 0.99 and was common knowledge in all experimental

sessions. The experimental data consist of 37, 39, 20 and 38 observations in the Prisoner’s Dilemma game, Battle

of the Sexes game, Stag-Hunt game and Chicken game, respectively. The experimental data points displayed below

are the average payoffs per pair over the last 10 periods of game-play.
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PD 17 11 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 37

BO 20 0 3 3 0 0 2 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 39

SH 17 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

CH 24 0 0 0 2 0 0 2 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 38

Table A.5: Experimental Data
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Appendix B. Convergence Details

The convergence details of the strategy-learning models in the pre-experimental phase are displayed in Table

B.6. The details are displayed for the parameters that minimized the Euclidean distance in the experimental phase

of the simulations. Recall that each simulation is broken up into epochs of 100 periods. The simulation runs

until the average epoch payoff of the pair has not changed by more than 0.01 from the previous epoch (in terms

of Euclidean distance) in 20 consecutive epochs, or 50,000 periods, which ever occurs first. For the Prisoner’s

Dilemma game and the Stag-Hunt game, all of the simulations converged within 50,000 periods. In the Battle of

the Sexes a significant number of the simulations did not converge within 50,000 periods. The pairs that did not

converge according to the criteria had both players playing their preferred action B repeatedly in, essentially, a war

of attrition, while waiting for the other player to give in. This led to an average payoff of (1.0, 1.0) over the course

of the epoch. However, even one deviation from this payoff over the 100-period epoch led to a payoff different

enough that did not satisfy the convergence criterion. Some of the simulations of the strategy I-SAW model did

not converge according to the criterion in the Chicken game. Pairs in these simulations were playing the mixed

strategy Nash equilibrium, which led to relatively unstable epoch payoffs.

STEWA γ-WB I-SAW

Game Average %NC Average %NC Average %NC

Prisoner’s Dilemma 20,750 0 14,582 0 14,332 0

Battle of the Sexes 28,459 41 21,416 15 32,979 58

Stag-Hunt 7,171 0 3,387 0 2,117 0

Chicken 8,704 3 4,044 0 23,252 42

Table B.6: Details on Convergence in the Pre-experimental Phase

Notes: The two columns of each strategy-learning model contain details about the average number of periods to convergence

and the percentage of the simulations that did not converge within 50,000 periods. The convergence details are displayed

for the parameters that minimized the Euclidean distance in the experimental phase.
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Appendix C. Models with Strategy Learning

We implement the proposed methodology to three proven action-learning models: the self-tuning Experience

Weighted Attraction model of [30], the γ-Weighted Beliefs model of [9] and the Inertia, Sampling and Weighting

model of [20]. The details on the modeling assumptions are provided below.

Appendix C.1. Self-tuning Experience Weighted Attraction (STEWA)

A detailed exposition of the STEWA model with actions can be found in [30]. Analogous to the latter model,

the STEWA model with strategies also consists of two variables that are updated once an agent switches strategies.

The first variable is Ni(χ), which is interpreted as the number of observation-equivalents of past experience in

block χ of player i. The second variable, denoted as Aji (χ), indicates player i’s attraction to strategy j after the

χth block of periods. The variables Ni(χ) and Aji (χ) begin with some prior values, Ni(0) and Aji (0). These prior

values can be thought of as reflecting pre-game experience, either due to learning transferred from different games

or due to pre-play analysis. In addition, we use an indicator function I(x, y) that equals 1 if x = y and 0 otherwise.

The evolution of learning over the χth block with χ ≥ 1 is governed by the following rules:

Ni (χ) = φi(χ) ·Ni (χ− 1) + 1, (C.1)

and

Aji (χ) =
φi(χ) ·Ni (χ− 1) ·Aji (χ− 1) + I(sji , si (χ)) ·Ri (χ) + δji (χ) · Eji (χ)

φi(χ) ·Ni (χ− 1) + 1
. (C.2)

Reinforcement Payoff

The reinforcement payoff in the proposed model, Ri(χ), is defined as the average payoff obtained by player i over

the χth block,

Ri (χ) =
1

Ti(χ)

∑

a∈h(χ)

gi (a) ,

where h(χ) is the sequence of action profiles played in the χth block and Ti(χ) is the χth block’s length for player

i.

Expected Foregone Payoff

To calculate the foregone payoff Eji (χ), players need to form beliefs about the current strategy of their opponent.

To determine the beliefs, let h (t1, t2) =
(
at1 , at1+1, . . . , at2

)
for t1 ≤ t2 be the truncated history between periods t1

and t2 (all inclusive). Also, let h (t, t− 1) = ∅ be the empty history. Let Ti(χ) =
∑χ
j=1 Ti(j) be the total number

of periods at the end of player i’s block χ. Then, strategy s−i is consistent with hTi(χ) for the last t′ periods if

s−i (h (Ti(χ)− t′, Ti(χ)− t′ − 1 + r)) = a
Ti(χ)−t′+r
−i for r = 0, . . . , t′ − 1.

Define the fitness function F : S−i × N→ [0, Ti(χ)] as

F (s−i, χ) = max
{
t′|s−i is consistent with hTi(χ) for the last t′ periods

}
.
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Define the belief function B : S−i × N→ [0, 1] as

B(s−i, χ) =
F(s−i, χ)∑

r∈S−i

F(r, χ)
,

which can be interpreted as player i’s belief that the other player was using strategy s−i at the end of block χ.

Therefore, the expected foregone payoff for player i of strategy j over the χth block is given by

Eji (χ) =
∑

s−i∈S−i

π
Ti(χ)
i (sji , s−i|h(s−i,χ)) · B(s−i, χ),

where s−i|h is the continuation strategy induced by history h and

h (s−i, χ) = h (Ti(χ)−F (s−i, χ) , Ti(χ)− 1)

is the longest history such that s−i is consistent with hTi(χ).

The Attention Function

The attention function δ(·) determines the weight placed on foregone payoffs and is represented by the following

function:

δji (χ) =
{

1 if Eji (χ) ≥ Ri(χ) and sji 6= si(χ)
0 otherwise.

Notice that the attention function enables player i to reinforce only unchosen strategies attaining weakly better

payoffs than the payoff attained by the chosen strategy.

The Decay Function

The decay rate function φ(·) weighs lagged attractions. The core of the φi(·) is a “surprise index,” which indicates

the difference between the other player’s most recent strategy and the strategies he chose in the previous blocks.

The averaged belief function σ : S−i × N→ [0, 1]

σ(s−i, χ) =
1

χ

χ∑

j=1

B(s−i, j)

averages the beliefs over the χ blocks that the other player chose strategy s−i. The surprise index Si(χ) simply

sums up the squared deviations between each averaged belief σ(s−i, χ) and the immediate belief B(s−i, χ); that is,

Si(χ) =
∑

s−i∈S−i

(σ(s−i, χ)− B(s−i, χ))2.

Thus, the surprise index captures the degree of change of the most recent beliefs from the historical average of

beliefs. Note that it varies from zero (when there is belief persistence) to two (when a player is certain that the

opponent just switched to a new strategy after playing a specific strategy from the beginning). The change-detecting

decay rate of the χth block is then

φi(χ) = 1− 1

2
Si(χ).

Therefore, when player i’s beliefs are not changing, φi(χ) = 1; that is, the player weighs previous attractions fully.

Alternatively, when player i’s beliefs are changing, then φi(χ) = 0; that is, the player puts no weight on previous
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attractions.

Attractions

Attractions determine probabilities of choosing strategies. We use the logit specification to calculate the choice

probability of strategy j. Thus, the probability of a player i choosing strategy j, when he updates his strategy at

the beginning of block χ+ 1, is

Pji (χ+ 1) =
eλ·A

j
i (χ)

∑K
k e

λ·Ak
i (χ)

.

The parameter λ ≥ 0 measures the sensitivity of players to attractions.

Finally, players update their strategies with the completion of a block of periods. The probability that player i

updates his strategy in period t is 1
Pt

i
and is determined endogenously via the expected length of the block term.

Appendix C.2. γ-Weighted Beliefs Model (γ-WB)

We first review briefly the γ-WB model of [9] with actions. Player i’s action set is Ai = {A,B}. Initially, a player

updates his beliefs on the opponent’s actions with parameter γ. In particular, he believes that the other player

(player −i) will play action a−i after period t with probability,

bi (a−i, t) =

∑t
r=1 γ

t−rI
(
ar−i = a−i

)
∑t
r=1 γ

t−r
.

He then calculates the expected payoff of action ai:

Ei(ai, t) =
∑

a−i∈A−i

bi (a−i, t) gi (ai, a−i) .

Assuming that the number of observation-equivalents of past experience is given by Ni(0) = 1 and Ni(t) =

γ ·Ni (t− 1) + 1, we can rewrite the above expression recursively as,

Ei(ai, t) =
γ ·Ni (t− 1)E (ai, t− 1) + I

(
at−i = a−i

)
gi (ai, a−i)

γ ·Ni (t− 1) + 1
.

Finally, an action is selected via the logit specification with parameter λ; that is, the probability of choosing action

ai in period t+ 1 is

Pi (ai, t+ 1) =
eλ·Ei(ai,t)

∑
ai∈Ai

eλ·Ei(ai,t)
.

The γ-WB model with strategy learning can be written in the same notation as the STEWA model with

strategy learning. The number of observation-equivalents of past experience starts with Ni(0) = 1. The initial

attractions are all equal and set to the expected payoff in the game if both players mix with probability 0.5. The

attractions in this model evolve according to the following two rules and parameter γ:

Ni (χ) = γ ·Ni (χ− 1) + 1, (C.3)
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and

Aji (χ) =
γ ·Ni (χ− 1) ·Aji (χ− 1) + Eji (χ)

Ni (χ)
. (C.4)

This model is equivalent to the γ-WB model of [9] if the set of automata is restricted to the two one-state automata.

Notice that if γ = 0, then the attractions simplify to the expected payoff from the last block. Also, the probability

of a player i choosing strategy j, when he updates his strategy at the beginning of block χ+ 1, is

Pji (χ+ 1) =
eλ·A

j
i (χ)

∑K
k e

λ·Ak
i (χ)

.

Finally, similar to the STEWA model with strategy learning, players update their strategies asynchronously. In

period t, a player updates his strategy with probability 1
Pt

i
.

Appendix C.3. Inertia, Sampling and Weighting (I-SAW)

We first review the I-SAW model of [20] with actions. I-SAW is an instance-based model, which allows for three

response modes: exploration, inertia and exploitation. In each period, a player enters one of the modes with

different probabilities. The I-SAW model with action learning can be summarized in the schematic in Figure

C.6. There are n players in the game. Each player has a set of parameters (pA, εi, πi, µi, ρi, ωi). The parameter

pA ∈ [0, 1] is the same for all agents. The other parameters are idiosyncratic with εi ∼ U [0, ε], πi ∼ U [0, π],

µi ∼ U [0, µ], ρi ∼ U [0, ρ] and ωi ∼ U [0, ω]. Dropping the subscripts for convenience, the parameters of the model

are (pA, ε, π, µ, ρ, ω). Player i’s action set is Ai = {A,B}. Let ati be the action of player i that was played in period

t, where hi (t1, t2) =
{
at1i , a

t1+1
i , . . . , at2i

}
for t1 ≤ t2. Similarly, let at−i be the actions of players other than i in

period t, where h−i (t1, t2) =
{
at1−i, a

t1+1
−i , . . . , at2−i

}
for t1 ≤ t2. We explain next the three response modes.

Exploration

In exploration, each player chooses action A with probability pA and action B with probability 1 − pA. The

probabilities are the same for all players.

Inertia

The decision to enter the inertia mode depends on an endogenous parameter Surprise(t) ∈ [0, 1]. A player might

enter the inertia mode after period 2 with probability π
Surprise(t)
i , where πi ∈ [0, 1]. The probability of inertia is

low when surprise is high and vice versa.

Exploitation

In exploitation trials, an individual selects the action with the highest Estimated Subjective Value (ESV). To

determine the ESV, player i randomly selects µi elements from h−i (0, t− 1) with replacement; let us call this set

M−i (0, t− 1). This set is chosen according to the following: with probability ρi player chooses at−1−i and with

probability 1 − ρ−i player chooses uniformly over h−i (0, t− 1). The same set M−i is used for each ai ∈ Ai. The

sample mean for action a′i is then defined as

SampleM(a′i, t) =
1

|M−i (0, t− 1)|
∑

a−i∈M−i(0,t−1)

gi (a′i, a−i) .

The GrandM(a′i, t) measures the average payoff player i would have received if they had played action a′ in every

33



New
Period

No
Explore

No
Inertia
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1− εi

εi

1− πSurprisei

πSurprisei

Figure C.6: Schematic Description of I-SAW

Notes: I-SAW allows for three response modes: exploration, inertia and exploitation. In exploration trials, a player chooses

amongst actions with some probability. Exploration occurs with probability εi. Inertia occurs with probability (1 − εi) ×
π
Surprise(t)
i . In this mode, a player repeats the last action. Exploitation occurs with probability (1− εi)× (1−πSurprise(t)i ).

In exploitation trials, a player selects the action with the highest Estimated Subjective Value (ESV).

period up to period t, and the other player had played as they did. It is defined as

GrandM(a′i, t) =
1

|h−i (0, t− 1)|
∑

a−i∈h−i(0,t−1)

gi (a′i, a−i) .

Then, player i’s ESV of action a′i is

ESV (a′i) = (1− ωi) · SampleM(a′i, t) + ωi ·GrandM(a′i, t),

where ω is the weight assigned on the payoff based on the entire history (GrandM) and 1 − ω is the weight

assigned on the payoff based on the sample from the history (SampleM). Then, the player simply chooses the a′i
that maximizes ESV (and chooses randomly in ties).

The I-SAW model with strategy learning is different from the I-SAW with action learning in two important

aspects. First, given that no exploration happens in a given period, the probability of inertia is now (1 − 1
Pt

i
)

rather than πSurprisei . Therefore, there is one less parameter than before. Second, the calculation of the ESV now

depends on the distribution of beliefs over strategies. The grand mean is thus

GrandMi

(
sj , χ

)
=

1

χ

χ∑

k=1

Eji (k).

Next, let Mi(χ) be a set of µi numbers drawn with replacement from {1, 2, . . . , χ}. Then, the sample mean is

SampleMi

(
sj , χ

)
=

1

|Mi(χ)|
∑

k∈Mi(χ)

Eji (k),
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where the same set Mi is used for each si ∈ Si. Finally, the ESV is calculated as

ESVi
(
sj , χ

)
= (1− ωi) · SampleMi

(
sj , χ

)
+ ωi ·GrandM

(
sj , χ

)
.

The framework work as follows. In the first period, a strategy is randomly selected (i.e. exploration takes place).

Concurrently, the expected payoff is calculated; this is the payoff attained if both players mix with probability 0.5.

In the second period, a player explores with probability εi. With probability (1− εi)× (1− 1
Pt

i
) the player enters

the inertia mode. If the player does not enter the inertia mode, then the block of periods is completed and a new

block of periods starts off. In the beginning of the block, the player calculates the ESV of all strategies and chooses

to play with the strategy that maximizes the ESV. The specific ESV becomes the new expected payoff, which is

also used to calculate Pti ; the latter determines the probability of inertia.
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Appendix D. Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The system can

be in any one of a finite number of internal configurations or “states.” The state of the system summarizes the

information concerning past inputs that is needed to determine the behavior of the system on subsequent inputs.

The specific type of finite automaton used here is a Moore machine. A Moore machine for player i, Mi, in a

repeated game G = (I,{Ai}i∈I , {gi}i∈I) is a four-tuple (Qi, q
0
i , fi, τi) where Qi is a finite set of internal states

of which q0i is specified to be the initial state, fi : Qi → Ai is an output function that assigns an action to every

state, and τi : Qi ×A−i → Qi is the transition function that assigns a state to every two-tuple of state and other

player’s action. It is pertinent to note that the transition function depends only on the present state and the other

player’s action. This formalization fits the natural description of a strategy as i’s plan of action in all possible

circumstances that are consistent with i’s plans. In contrast, the notion of a game-theoretic strategy for i requires

the specification of an action for every possible history, including those that are inconsistent with i’s plan of action.

It is important to highlight that to formulate the game-theoretic notion of a strategy, one would only have to

construct the transition function so that τi : Qi ×A → Qi, instead of τi : Qi ×A−i → Qi.

A
q1

B
q2

B

A AB

S
ta
rt

S
ta
rt

Qi = {q1, q2}
q0i = q1

fi (q) =

{
A if q = q1
B if q = q2

τi (q, a−i) =

{
q1 if (q, a−i) = (q1, A)
q2 otherwise

Figure D.7: Grim-Trigger Automaton

Notes: The vertices denote the states of the automaton, and the arcs labeled with the action of the other agent indicate the

transition to the states.

In the first period, the state is q0i , and the automaton chooses the action fi(q
0
i ). If a−i is the action chosen by

the other player in the first period, then the state of i’s automaton changes to τi(q
0
i , a−i), and in the second period,

i chooses the action dictated by fi in that state. Then, the state changes again according to the transition function

given the other agent’s action. Thus, whenever the automaton is in some state q, it chooses the action fi(q), while

the transition function τi specifies the automaton’s transition from q (to a state) in response to the action taken by

the other player. For example, the automaton (Qi, q
0
i , fi, τi) in Figure D.7 carries out the “Grim-Trigger” strategy.

In the transition diagram, a vertex denotes the internal state of the automaton with the prescribed agent’s action

indicated in the center, and the arcs labeled with the action of the other player indicate the transition to the states.

Thus, the strategy chooses A, as long as both players have chosen A in every period in the past and chooses B

otherwise.
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Appendix E. Evolution of Fit Within the Experimental Phase

The experimental phase consisted of a fixed-pair matching of 100 periods. In Figure 4, we displayed the plots of

the models with strategy learning and the human experimental data, while averaging the last 10 periods of game-

play. Furthermore, Table 3 indicated the Euclidean distance of the models with strategy learning for the same

range of periods in the experimental phase. It is also informative to compare the models’ fit to the experimental

data in the later periods with the models’ fit to the experimental data in the earlier periods. This way, we can

determine the models’ evolution of fit within the experimental phase.

In Figure E.8, we plot the predictions of the three strategy-learning models and the data from the experiments

of [40]. But this time, the computational simulations and the experimental results consist of averaging the first 10

periods of game-play. Furthermore, in Table E.7, we indicate the total Euclidean distance between the laboratory

experimental data and the respective predictions of the proposed models in the first 10 periods as well as the last

10 periods across all four games. Overall, the strategy learnings models in the first 10 periods of game-play do

reasonably well. The total Euclidean distance across the four games is 1.622 in the STEWA model, 1.642 in the

γ-WB model and 1.085 in the I-SAW model. Looking at Figure E.8, we observe that the models do a fairly good

job in fitting the experimental data in the Prisoner’s Dilemma game where they predict mutual cooperation, and

in the Stag-Hunt game where they predict the payoff-dominant Nash equilibrium. On the other hand, the STEWA

and γ-WB models predict some alternations in the Battle of the Sexes game, and strong mutual conciliation in

the Chicken game. Some mutual conciliation is indeed observed in the experimental data, but no alternations are

observed in the Battle of the Sexes game. The latter games are clearly tougher to establish coordination from

the beginning. Thus, we observe a lot of noisy behavior in the experimental data as a result of subjects’ different

backgrounds and abilities to internalize fully the instructions and/or the game structure from the start. Such noisy

behavior is hard to capture in the proposed models. However, the plots of Figure 4 confirm that as time goes by,

learning takes place, which limits the amount of noise in subjects’ behavior, and thus enables the proposed models

to approximate subjects’ behavior at the end remarkably well.

STEWA γ-WB I-SAW

Strategy-Learning Models (Last 10 Periods) 0.846 0.893 1.073

Strategy-Learning Models (First 10 Periods) 1.622 1.642 1.085

Table E.7: Evolution of Fit within the Experimental Phase

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the respective

predictions of the models in the experimental phase across all four games. The first row is reproduced from Table 3 and

indicates the Euclidean distance between the experimental data and the predictions of the strategy-learning models for the

last 10 periods. The second row indicates the Euclidean distance between the experimental data and the predictions of

the strategy-learning models for the first 10 periods. All results are based on a discretization parameter ε = 0.5. If the

predictions matched the data perfectly, then the distance would have been 0.
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STEWA γ-WB I-SAW Human Subjects
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Figure E.8: Strategy-Learning Models & Experimental Data - First 10 Periods

Notes: We validate the predictions of the strategy-learning models in the experimental phase with human data from the

experiments of [40]. The computational simulations and the experimental results with human subjects consist of averaging

the first 10 periods of game-play.
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Appendix F. Alternative Specifications

Appendix F.1. Asynchronous Updating vs. Synchronous Updating

The third rule proposed requires that players update their repeated-game strategies with the completion of

a block of periods. Furthermore, the length of a block is determined endogenously and is based on the surprise-

triggers-change regularity identified by [22]. Alternatively, our framework could dictate synchronous strategy-

updates for all players. Although, such direction is behaviorally unrealistic (for the reasons outlined in Section

5.3), nevertheless, we feel compelled to rerun the simulations with simultaneous (synchronous) strategy-updates

for all players in order to highlight the value-added of asynchronous updating of repeated-game strategies in

approximating subjects’ behavior.

The simulations of the strategy-learning models with synchronous updating are run in an analogous fashion

to those of the strategy-learning models with asynchronous updating; the only difference is that we forego the

asynchronous-updating-of-strategies equation and instead, introduce a parameter as the probability of updating the

strategy set. Therefore, in addition to the existing parameters of each model, we introduce one more parameter: ρ.

The three models have been calibrated based on a grid search. The plots of the experimental phase are displayed

in Figure F.9. Furthermore, we indicate in Table F.8, the total Euclidean distance between the models with

synchronicity in updating in the experimental phase and the experimental data across the four games.

The synchronous strategy-learning models perform quite well in the Stag-Hunt game and the Chicken game.

On the other had, they perform relatively well in the Prisoner’s Dilemma game and the Battle of the Sexes

game. Coordination on the cooperative outcome in the Prisoner’s Dilemma game is the prevalent outcome in the

experimental data albeit, as indicated in Figure F.9, some pairs end up defecting. The synchronous strategy-

learning models capture the cooperative outcome well, but have hard time capturing the defecting outcome as

shown in Figure F.9. Applying asynchronous updating of strategies in this specific game, makes it more difficult

for players to coordinate on the cooperative outcome. For example, a pair of players might be using cooperative

strategies with triggers to defecting states in case of non-conformity to the cooperative outcome (for instance,

“Grim-Trigger” strategies). The asynchronous updating is likely to lead to implementation of these strategies at

different time periods. Consequently, one of the players might be in a defecting state when the other player decides

to implement the specific strategy thus leading the pair to an endless string of retaliations i.e. mutual defection.

Despite the fair performance of the synchronous strategy-learning models in the Prisoner’s Dilemma game and the

Battle of the Sexes game, the models with synchronous updating do quite well in the other two games. Thus,

for modelers who desire simplicity, the synchronous strategy-learning models are a good alternative. However, for

our purposes, the proposed modeling framework with asynchronous updating of repeated-game strategies is still a

better choice given that it incorporates elements of psychological realism and economic relevance as envisioned by

[46]. Additionally, the three strategy-learning models with asynchronous updating do unequivocally better across

all four games relative to the respective strategy-learning models with synchronous updating as shown in Table

F.8.

Appendix F.2. Alternative Fitness Specifications

One of the difficulties in coping with repeated-game strategies is that it is not possible to observe the precise

strategy of the opponent despite observing the history of play. One way to get around this difficulty is to use
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Figure F.9: Strategy-Learning Models with Synchronous Updating in the Experimental Phase & Experimen-
tal Data

Notes: We validate the predictions of the three strategy-learning models with synchronous updating of strategies in the

experimental phase with human data from the experiments of [40]. The computational simulations and the experimental

results with human subjects consist of averaging the last 10 periods of game-play.
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reinforcement learning, which doesn’t require knowledge of the opponent’s strategy.26 Yet a big drawback of

reinforcement learning models is that such approach can take a long time to converge. In order for a given

repeated-game strategy’s attraction to be updated in a reinforcement-learning model, the strategy must be played

first. As the set of possible repeated-game strategies increases, the speed of convergence in reinforcement learning

models deteriorates.27 Another way to get around the difficulty of formulating beliefs about the repeated-game

strategy of the opponent is to apply a fitness function. This approach is particularly attractive as complementing

reinforcement learning with a belief-based component expedites convergence. When beliefs are added to the model,

the attractions for every repeated-game strategy are updated at the end of every block. Therefore, the attraction

on a strong strategy can start to increase with the first attraction-update; in contrast, implementing only the

reinforcement component, keeps a strong strategy unaffected in terms of attraction-weights until it gets selected.

For instance, the fitness function proposed here counts the number of consecutive fits between the candidate

repeated-game strategy of the opponent and the observed sequence of actions profiles starting from the most recent

and going backwards. We discuss next two alternative fitness specifications.

The first fitness function is a memory-one specification in which player i develops beliefs about player −i’s
strategy in the χth block. Recall that the χth block’s length for player i is denoted by Ti(χ). The block is

divided into one-period observations of the following form:
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i , where t(χ) is the tth period

corresponding to block χ. A strategy s−i is said to support
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i if there exists some history

ht(χ) ∈ H such that the last action profile of ht(χ) is
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
and s−i

(
ht(χ)

)
= a

t(χ)
−i . The first alternative

fitness function can then be written as,

F1 (s−i, χ) =

Ti(χ)−2∑

r=0

I
(
s−i supports

(
ari , a

r
−i
)
⇒ ar+1

−i
)
.

The second fitness function is a memory-two specification similar to the one above. In this case, the block is di-

vided into two-period observations of the following form:
(
a
t(χ)−2
i , a

t(χ)−2
−i

)
⇒
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i . A strat-

egy s−i is said to support
(
a
t(χ)−2
i , a

t(χ)−2
−i

)
⇒
(
a
t(χ)−1
i , a

t(χ)−1
−i

)
⇒ a

t(χ)
−i if there exists some history ht(χ) ∈ H such

that
(
a
t(χ)−2
i , a

t(χ)−2
−i

)
and

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
are the last two action profiles of ht(χ) and s−i

(
a
t(χ)−2
i , a

t(χ)−2
−i

)
=

a
t(χ)−1
−i and s−i

(
a
t(χ)−1
i , a

t(χ)−1
−i

)
= a

t(χ)
−i . The second alternative fitness specification can be written as,

F2 (s−i, χ) =

Ti(χ)−3∑

r=0

I
(
s−i supports

(
ari , a

r
−i
)
⇒
(
ar+1
i , ar+1

−i
)
⇒ ar+2

−i
)
.

26Reinforcement learning operates according to the “law of effect,” which was formulated in the doctoral dissertation of
[57]. In principle, it assumes that a strategy is “reinforced” by the payoff it earned and that the propensity to choose a
strategy depends, in some way, on its stock of reinforcement. Over the last decade, a growing body of research has studied
analytically the properties of reinforcement learning both in normal-form and extensive-form games. On one hand, [38]
examined the convergence properties in repeated, finite, two-player, normal-form games in a learning process where each
player uses the Cumulative Proportional Reinforcement (CPR) rule on strategies. The authors proved that the process
converges with positive probability towards any strict pure Nash equilibrium. Related theoretical results were also given in
[31] and [33]. On the other hand, [39] showed that when the CPR rule is applied on actions in a repeated, finite, extensive-
form game with perfect information and generic (no ties for any player) payoffs, the process converges with probability one
to the (unique) subgame perfect equilibrium. These contributions in economic theory were preceded by a large body of
literature that originated in the work of mathematical psychologists in the 1950s (see for example, [5] and [24]).

27In addition, several studies show that providing foregone payoff information affects learning, which suggests that players
do not simply reinforce chosen strategies (see, for instance the study of [42]).
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We display the plots for each alternative fitness specification in the experimental phase in Figures F.10-F.11

along with the experimental data. The plots use the parameters that led to the best goodness of fit across all four

games. In addition, Table F.8 shows the total Euclidean distance between the laboratory experimental data and

the respective predictions of the models with the alternative fitness specifications in the experimental phase across

all four games. At the aggregate level, the models with the alternative fitness functions do relatively well compared

to their respective action-learning models, but not as good as the strategy-learning models with the specific fitness

function proposed.

STEWA γ-WB I-SAW

Action-Learning Models 2.064 2.575 2.404

Strategy-Learning Models 0.846 0.893 1.073

Synchronous Updating 1.254 1.112 1.291

Fitness Function #1 1.485 1.703 1.779

Fitness Function #2 1.398 1.542 1.695

Table F.8: Alternative Specifications

Notes: The columns indicate the total Euclidean distance between the laboratory experimental data and the respective

predictions of the models in the experimental phase across all four games. The first two rows are reproduced from Table 3,

whereas the last three rows pertain the alternative specifications. All results are based on a discretization parameter ε = 0.5.

If the predictions matched the data perfectly, then the distance would have been 0.

In addition, a value-added of the fitness function proposed in our model, beyond its overall superiority in

approximating subjects’ behavior well, is that it is behaviorally realistic, in sharp contrast to the alternative fitness

specifications, which are somewhat naive. For instance, both alternative fitness functions assign equal weight to all

actions in the block. Assume player i is trying to determine his opponent’s repeated-game strategy. Furthermore,

assume his opponent played A in every period in the first half of the most recent block, but played B in every

period in the second half of the most recent block. The two alternative fitness functions would assign equal weight

to the “Always A” strategy and “Always B” strategy. However, the fitness function proposed would assign high

weight to the “Always B” strategy, but 0 weight to the “Always A” strategy, because it starts from the most recent

observation in the block and works backwards.
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STEWA γ-WB I-SAW Human Subjects
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Figure F.10: Strategy-Learning Models with Fitness Function #1 in the Experimental Phase & Experimental
Data

Notes: We validate the predictions of the three strategy-learning models with fitness function #1 in the experimental phase

with human data from the experiments of [40]. The computational simulations and the experimental results with human

subjects consist of averaging the last 10 periods of game-play.
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Figure F.11: Strategy-Learning Models with Fitness Function #2 in the Experimental Phase & Experimental
Data

Notes: We validate the predictions of the three strategy-learning models with fitness function #2 in the experimental phase

with human data from the experiments of [40]. The computational simulations and the experimental results with human

subjects consist of averaging the last 10 periods of game-play.
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Appendix G. Sensitivity Analysis
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Figure G.12: Sensitivity of Results to the Discretization Parameter ε

Notes: We compare the strategy-learning models with the action-learning models for the entire range of the discretization

parameter ε. The action-learning models are denoted with dashed lines, whereas the strategy-learning models are denoted

with solid lines.
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