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Abstract

We examine the asymptotic behavior of a finite, but error-prone population, whose agents

can choose one of ALLD (always defect), ALLC (always cooperate), or Pavlov (repeats the

previous action if the opponent cooperated and changes action otherwise) to play the repeated

Prisoner’s Dilemma. A novelty of the study is that it allows for three types of errors that affect

agents’ strategies in distinct ways: (a) implementation errors, (b) perception errors of one’s

own action, and (c) perception errors of the opponent’s action. We also derive numerical results

based on the payoff matrix used in the tournaments of Axelrod (1984). Strategies’ payoffs are

monitored as the likelihood of committing errors increases from zero to one, which enables us

to provide a taxonomy of best response strategies. We find that for some range of error levels, a

unique best response (i.e. a dominant strategy) exists. In all other, the population composition

can vary based on the proportion of each strategist’s type and/or the payoffs of the matrix.

Overall, our results indicate that the emergence of cooperation is considerably weak at most

error levels.

JEL Classification: C02, C60, C72

Keywords: Prisoner’s Dilemma, Bounded Rationality, Markov Process, Dominant Strategies

∗The usual disclaimer applies.
†Mailing Address: Department of Economics, University of Southampton, Southampton, SO17 1BJ, United Kingdom.

Email: c.ioannou@soton.ac.uk.



1 Introduction

Agents engage in behaviors that are constrained by the limitations of their nature and

the surrounding environment. Such limitations have been treated by researchers under the

rubric of “errors.” Errors oftentimes result in unintended actions and/or incorrect inferences,

which might lead to significant complications quite fast. For example, on 21 January, 1968,

a nuclear-armed United States Air Force B-52 aircraft on a Cold War “Chrome Dome”

mission, crushed near Thule Air Base in the Danish-administered territory of Greenland.1

The incident led to a short escalation of Cold War tensions between the Americans and

Soviets. A much sharper escalation occurred on September 1, 1983, when Korean Air Lines

Flight 007 was shot down by the Soviets, killing all 269 people aboard, after the aircraft

strayed into prohibited Soviet airspace around the time of a planned missile test. Soviets

initially denied knowledge of the incident, but later admitted the shoot-down, claiming that

the aircraft was on a spy mission.

Our objective in this study is to examine the asymptotic behavior of a finite, but error-

prone population of agents that play the repeated Prisoner’s Dilemma game. The latter game

has become the theoretical gold standard for investigating interactions; its importance stems

from defying common sense reasoning and highlighting the omnipresent conflict of interests

among unrelated agents. The generic Prisoner’s Dilemma game is indicated in Table 1.2

Furthermore, we restrict significantly the number of strategies considered to ensure that the

analysis of the selection dynamics is tractable. We thus concentrate on three, memory-one

strategists: the unconditional egoist, who always defects (ALLD); the unconditional altruist,

who always cooperates (ALLC); and the opportunist, who repeats the previous action if the

opponent cooperated and changes action otherwise (Pavlov).3

1Operation “Chrome Dome,” initiated in 1960, was one of several United States Air Force Cold-War
era airborne global alert programs in which B-52 bomber aircrafts armed with thermonuclear weapons were
assigned targets in the U.S.S.R. on schedules guaranteeing that a substantial number of them were flying
and fueled for their missions at any given time.

2There are many examples in human interaction as well as interactions in nature that can be depicted
by the repeated Prisoner’s Dilemma game. For instance, arms races such as the Cold War or the opposing
alliances of NATO and Warsaw Pact during the Cold War can be modeled by the repeated Prisoner’s
Dilemma game. Arms races also exist in biological systems; one can detect arms races between predators
and prey, or between parasites and their hosts. A last biochemical example is provided by the evolution of
adenosine triphosphate (ATP). ATP is a nucleoside triphosphate used in cells as a coenzyme. Cooperators
have a low rate but high yield of ATP production, whereas defectors have a high rate but low yield of ATP
production (Pfeiffer, Schuster, and Bonhoeffer (2001)).

3The name Pavlov was coined by Kraines and Kraines (1989). Other names for Pavlov are Win-stay,
Lose-shift (WSLS) and Perfect Tit-For-Tat (PTFT). If WSLS receives the “Temptation” or “Reward” payoff,
then it will repeat the action (“win-stay”), whereas if WSLS receives the “Punishment” or the “Sucker’s”
payoff, then it will switch to the other action (“lose-shift”). On the other hand, PTFT reflects the fact that
for typical payoffs the rule is a symmetric subgame perfect equilibrium.
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Table 1: Generic Prisoner’s Dilemma Payoff Matrix

Cooperate Defect

Cooperate R S

Defect T P

Notes: Agents either Cooperate (C) or Defect (D). If both agents choose C, then each earns the Reward

payoff (R). If both agents choose D, then each earns the Punishment payoff (P). If one agent chooses D

and the other agent chooses C, then the former agent earns the Temptation payoff (T), and the latter agent

earns the Sucker’s payoff (S). The payoffs are ordered such that T > R > P > S and satisfy R > T+S
2 . The

payoffs are those of the row agent.

A novelty of the study is that we allow for three types of errors that affect agents’ strate-

gies in distinct ways. The first channel models errors in the implementation of actions along

the lines of Selten’s trembling hand (Selten (1975)). The other two channels model errors

in the transmission of information; in particular, the second channel models errors in the

transmission of one’s own action, whereas the third channel models errors in the transmis-

sion of the opponent’s action. For instance, the first incident in the opening paragraph is an

example of an implementation error, whereas the second incident is an example of a percep-

tion error of the opponent’s action. Crucially, the error types allowed affect the strategies

studied in different ways. Neither ALLC nor ALLD are affected by perception errors of one’s

own action or perception errors of the opponent’s action. Yet both strategies are affected by

implementation errors. On the contrary, Pavlov is affected by all three types of errors. Even

though many studies investigate the impact of errors on selected strategies, to the best of

our knowledge, this is the first study to allow for all three types of errors.4

We model the successive actions chosen by the agents using such strategies by a Markov

process. Moreover, the presence of errors guarantees that the process is ergodic. We thus

compute the invariant distributions of the realized actions for each pair of strategies and

obtain the asymptotic payoff matrix across the three strategies. We also derive numerical

results based on the payoff matrix used in the celebrated tournaments of Axelrod (1984).5

4Other studies that investigate the impact of errors on strategies, albeit consider only implementation
errors or perception errors of the opponent’s action, are those of Molander (1985), Fudenberg and Maskin
(1990), Nowak, Sigmund, and El-Sedy (1995), Kraines and Kraines (1995), Wu and Axelrod (1995), Wahl
and Nowak (1999), Kraines and Kraines (2000), Panchanathan and Boyd (2003), Nowak and Sigmund (2004),
Imhof, Fudenberg, and Nowak (2005), and Rand, Fudenberg, and Dreber (2013).

5Our preference towards using the specific payoff matrix is twofold: first, Axelrod’s tournaments were
error-free, therefore it would be interesting to investigate the interplay of these three simple, but fundamental
strategies in the presence of errors, and second, there is a vast literature that succeeded the findings in the
tournaments of Axelrod, which can serve as a motivation to the discussion of this study.
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Strategies’ payoffs are monitored as the likelihood of committing errors increases from zero to

one. Traditionally, error levels have been assumed quite small. This is a plausible assumption

to make in many environments, but not in every environment − for instance, in environments

where agents lack vital resources, the likelihood of committing errors is quite high. We thus

propose a systematic analysis of the entire range of error levels to obtain a taxonomy of best

response strategies in the presence of errors. When a unique best response is indicated, then

that best response is also a dominant strategy. Consequently, the taxonomy enables us to

also determine dominant strategies.

We find that for some range of error levels, a dominant strategy exists. In the error levels

where a dominant strategy does exist, ALLD is the dominant strategy at low error levels;

Pavlov is the dominant strategy at intermediate levels; and ALLC, which acts as if it were

an ALLD in low error levels, is the dominant strategy at high error levels. The notion of

dominance is of paramount importance to the selection dynamics. More specifically, an eco-

logical selection process will enable the dominant strategy to proliferate to the point where

the entire population converges to a pure one implementing that strategy.6 Furthermore,

in the error levels where a dominant strategy does not exist, the population composition

can vary based on the proportion of each strategist’s type and/or the payoffs of the Pris-

oner’s Dilemma matrix. Overall, our results indicate that the emergence of cooperation is

considerably weak at most error levels.

The rest of the paper is organized as follows. In Section 2, we describe the analytical

framework using a Markov process. In Section 3, we revisit Axelrod’s tournaments. We

first review some important findings highlighted in the celebrated tournaments, and then

discuss subsequent seminal studies. In Section 4, we use the numerical values of Axelrod’s

payoff matrix to derive and display graphically the payoffs of the strategies in the head-to-

head competitions for the entire range of errors. We also present examples to discuss the

implications for the population dynamics and provide a taxonomy of best response strategies

in the presence of errors. In Section 5, we discuss the important findings. Finally, in Section

6, we offer concluding remarks and direction for future research.

6In the ecological perspective, there is a changing distribution of the strategists’ types. The less success-
ful strategists become less common and the more successful strategists proliferate. The latter perspective
differs from an evolutionary perspective, which would allow mutations to introduce new strategies into the
environment.
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2 Markov Process

We provide next the framework to study the asymptotic behavior of a finite, but error-prone

population, whose agents can choose one of ALLD, ALLC, or Pavlov to play the repeated

Prisoner’s Dilemma game. Each period of play leads to an outcome j (j = 1, 2, 3, 4): (C,C),

(C,D), (D,C), and (D,D). Note that the first position denotes the action taken by agent i

and the second position that of agent −i. The transition rules are labeled by quadruples

(s1, s2, s3, s4) of zeros and ones. In this context, sj is 1 if the strategy plays Cooperate and

0 if the strategy plays Defect, after outcome j is realized. The transition rules for ALLD,

ALLC, and Pavlov are (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 0, 1),7 respectively. For convenience, these

rules are labeled SALLD, SALLC , and SPavlov. Suppose that strategies are subjected to three

types of errors: (a) implementation errors, (b) perception errors of one’s own action, and (c)

perception errors of the opponent’s action. Let ε denote the probability of committing an

implementation error, δ the probability of committing a perception error of the opponent’s

action, and ζ the probability of committing a perception error of one’s own action.

A stochastic strategy has transition rules p = (p1, p2, p3, p4), where pj is any number

between 0 and 1 denoting the probability of cooperating after the corresponding outcome

of the previous period. The space of all such rules is the four-dimensional unit cube; the

corners are just the degenerate transition rules. In the context of the proposed framework,

the stochastic transition rules of the three strategies are:

• SALLC : ((1− ε), (1− ε), (1− ε), (1− ε)),

• SALLD : (ε, ε, ε, ε), and

• SPavlov : ((1 − δ)(1 − ε)(1 − ζ) + δε(1 − ζ) + ζδ(1 − ε) + ζε(1 − δ), ε(1 − δ)(1 − ζ) +

ζ(1− δ)(1− ε) + δ(1− ε)(1− ζ), ε(1− δ)(1− ζ) + ζ(1− δ)(1− ε) + δ(1− ε)(1− ζ), (1−
δ)(1− ε)(1− ζ) + δε(1− ζ) + ζδ(1− ε) + ζε(1− δ)).

Note that neither ALLC nor ALLD is affected by perception errors of one’s own or the

opponent’s action. Pavlov, however, is affected by all three types of errors.

A rule p = (p1, p2, p3, p4) that is matched against a rule q = (q1, q2, q3, q4) yields a Markov

process where the transitions between the four possible states are given by the matrix

7Consider the transition rule for Pavlov. Recall that Pavlov repeats the previous action if the opponent
cooperated and changes action otherwise. The transition rule signifies that the probability of cooperating
is 1, if the outcome (C,C) or (D,D) is realized. Otherwise, if outcome (C,D) or (D,C) is observed, then the
probability of cooperating is 0.
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
p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

 .

If p and q are in the interior of the strategy cube, then all entries of this stochastic

matrix are strictly positive. Consequently, there exists a unique stationary distribution

πp/q = (π1, π2, π3, π4) such that p
(n)
j is the probability of being in state j in the nth period,

and converges to πj for n→∞ (j = 1, 2, 3, 4). It follows that the payoff for agent i using p

against agent −i using q is given by

P(p,q) = Rπ1 + Sπ2 + Tπ3 + Pπ4, (1)

where the coefficients arise from the payoff matrix in Table 1. Notice that πj and also the

payoffs are independent of the initial condition. For any error level 0 < ε, δ, ζ < 1, the payoff

obtained by a strategy using a transition rule Si against a strategy with transition rule S−i

can be computed via (1).8 In Table 2, we provide the asymptotic payoff matrix for any error

level 0 < ε, δ, ζ < 1 across the three strategies: ALLD, ALLC, and Pavlov.

3 Axelrod’s Tournaments

There are many conceivable strategies for the repeated Prisoner’s Dilemma game. This

prompted Robert Axelrod to conduct computational tournaments to determine the best

strategy in the game (Axelrod and Hamilton (1981); Axelrod (1984)). In the first tour-

nament, there were 14 entries, whereas in the second tournament, there were 63 entries.

Tit-For-Tat (TFT) was the champion in both tournaments. TFT is a simple strategy that

starts off by cooperating and then imitates the opponent’s most recent action (Rapoport and

Chammah (1965)). TFT’s victory was a startling outcome especially given that Axelrod had

circulated the results and solicited entries from the first tournament prior to conducting the

second tournament. Contestants in the second tournament tried to design more sophisti-

cated strategies that were superior to TFT, yet TFT won again (Axelrod (1980a); Axelrod

(1980b)). The key to TFT’s success is that it cooperates with other reciprocators, but resists

exploitation by strategies, such as ALLD. Nevertheless, TFT has an Achilles’ heel which did

8The limit value of the payoff for ε→ 0, δ → 0, and ζ → 0 cannot be computed, as the transition matrix
is no longer irreducible. Therefore, the stationary distribution π is no longer uniquely defined.
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not become apparent in the error-free tournaments of Axelrod (Nowak and Sigmund (1992)).

If a pair of TFTs interact with each other and one defects by mistake, then the other TFT

will retaliate and thus the two TFTs will lock themselves into an endless string of retaliations

(i.e. a vendetta). TFT’s unrelenting punishment never forgives even a single deviation, thus

inhibiting the evolution of cooperation (Molander (1985)).

Following the success of Axelrod’s tournaments, Bendor, Kramer, and Stout (1991)

initiated a new tournament. However, in this tournament the authors re-evaluated the

performance of reciprocating strategies, such as TFT, and identified alternative strategies

that could sustain cooperation in an environment with random shocks. This time TFT

placed eighth out of the thirteen strategies considered. The winning strategy was Nice-And-

Forgiving (NAF), which differs in many ways from TFT. First, NAF is nice in the sense that

it cooperates as long as the frequency of cooperation of the opponent is above some thresh-

old. Second, NAF is forgiving in the sense that, although NAF retaliates if the opponent’s

cooperation falls below the threshold level, it reverts to full cooperation before its opponent

does, as long as the opponent meets certain minimal levels of cooperation.9 Beyond NAF,

Nowak and Sigmund (1993) showed that Pavlov could also typically outperform TFT in the

repeated Prisoner’s Dilemma game. Pavlov responds to stimuli applying Thorndike’s “law

of effect,” hence it is more resistant than TFT to cycles of recrimination and thrives at the

expense of unconditional cooperative strategies. Indeed, if a pair of Pavlovs interact with

each other and one defects in error, then the other Pavlov will retaliate in the next period

(so will the Pavlov that committed the error), but subsequently both Pavlovs will resume

mutual cooperation. In addition, if Pavlov notices than an inadvertent defection against

an opponent meets no retaliation, Pavlov will continue to defect thus capitalizing on the

“Temptation” payoff. Thus, Pavlov would exploit a strategy, such as ALLC. Yet Pavlov is

vulnerable to exploitation by unconditionally aggressive strategies, such as ALLD. On the

other hand, ALLD is myopically flawed despite being aggressive as its short-term advantage

succumbs to its own success.

Within the huge class of strategies in the repeated Prisoner’s Dilemma game, we shall

concentrate on three, memory-one strategies: ALLD, ALLC, and Pavlov. ALLD and ALLC

are natural choices to provide a lower and an upper bound on payoffs, and Pavlov has been

shown to be evolutionary stable in the set of strategies of finite complexity when allowing

9The success of NAF is not a robust result, but is limited to the particular environment. As Bendor,
Kramer, and Stout (1991) note, the generosity of NAF creates a risk: other strategies may exploit NAF’s
willingness to give more than it receives. In other words, NAF can be suckered by a nasty strategy that
is disinterested in joint gains. Due to its generosity, NAF lost in its pairwise play with every one of its
opponents. In contrast to NAF’s pattern, VIGILANT, the strategy that placed dead last in the tournament,
beat every one of its partners in bilateral play. VIGILANT was a highly provocative and unforgiving strategy
that retaliated sharply if it inferred that its partner was playing anything less than maximal cooperation.
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Table 3: Axelrod’s Prisoner’s Dilemma Payoff Matrix

Cooperate Defect

Cooperate 3 0

Defect 5 1

Notes: The payoffs are those of the row agent.

for errors (Fudenberg and Maskin (1990)). Needless to say, there are many other possible

strategies that could be considered, and some indeed play an important role. Yet coping

with a mere, tri-morphic population still results in a high degree of perplexity in terms of

selection dynamics, mainly because of the possibility of “rock-paper-scissors” cycles; that is,

it may happen that strategy B beats strategy A, strategy C beats strategy B, and strategy

A, in turn, beats strategy C. In such a case, the selection dynamics can lead to long-term

coexistence of the strategies.

4 Numerical Results

In this section, we first determine how the level of errors affects the payoffs of a pair of agents.

We then display graphically the payoffs of the strategies in the head-to-head competitions

for the entire range of errors. We also present examples to discuss the implications to the

population dynamics, and provide a taxonomy of best response strategies in the presence of

errors. For the calculation of the values, we used the payoff matrix from the tournaments of

Axelrod (1984). The payoff matrix is displayed in Table 3. Our quest to derive exact results

led us to impose two simplifying assumptions. We assume that (i) the error level is common

knowledge amongst agents, and (ii) for each error type, the error level is the same. To fix

ideas, consider a parasite’s virulence, which depends only on the neighborhood. Furthermore,

assume that all adjacent parasites face the exact identical conditions − the only difference

amongst the adjacent parasites is the strategy pursued (Nowak and May (2000)).
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4.1 Payoffs with Errors

As highlighted above, we shall assume that the error level is common knowledge and that the

likelihood of committing any type of error is the same; that is, 0 < ε = δ = ζ < 1 for all levels.

Note that the latter assumption is not as restrictive as it may seem. Recall that only Pavlov

is affected by all three types of errors; ALLD and ALLC are only affected by implementation

errors. Having said this, we do acknowledge that varying the error levels across error types

would contribute to the generality of the results. We defer such an interesting venue for future

work. The idea is to first calculate the invariant distribution of each pair combination at each

error level. Then, the distribution is plugged into the payoff function (1) with the numerical

values of Axelrod’s payoff matrix in order to derive the corresponding payoffs. For example,

assume that an ALLD is matched with another ALLD at an error level of 10%. The invariant

distribution at this error level is πALLD/ALLD = (0.102, 0.10 · (1− 0.10), 0.10 · (1− 0.10), (1−
0.10)2). (The invariant distribution for each pair is provided in the Appendix.) The payoff

for agent i using ALLD against agent −i also using ALLD, at the 10% error level, is given by

P(ALLD,ALLD) = 3 ·0.102 + 0 ·0.10 · (1−0.10) + 5 ·0.10 · (1−0.10) + 1 · (1−0.10)2 = 1.29.

The same procedure is followed for all combination pairs in all error levels. This way, we can

observe the trends, as well as any monotonicity properties where those exist. The payoffs for

the entire range of errors is demonstrated graphically in Figure 1. It is interesting to note

that with the exception of the payoff of an ALLC when paired with a Pavlov, which exhibits

no monotonicity properties, every other payoff function is either monotonically increasing or

decreasing as the likelihood of errors increases.

In the top left corner in Figure 1, the plot of the payoff of ALLC when paired with one

of ALLC, ALLD, or Pavlov is provided. The payoff of an ALLC paired with a twin starts off

near the “Reward” payoff, but goes down and reaches near the “Punishment” payoff as the

likelihood of committing implementation errors reaches 1. In the specific mark, both ALLCs

behave almost as ALLDs. The payoff of an ALLC when matched with an ALLD starts off

near the “Sucker’s” payoff and gradually comes near to the “Temptation” payoff when the

likelihood of committing an implementation error approaches 1. At this mark, ALLC acts

almost as if it were an ALLD, whereas an ALLD acts almost as if it were an ALLC. On

the other hand, the payoff of an ALLC when paired with Pavlov starts off a little bit higher

than the “Punishment” payoff, then at the 50% error level comes close to a payoff of 2 as

the pair alternates between the “Reward” payoff and the “Punishment” payoff. Around the

55% error level, the payoff of ALLC reverses direction. At such high error levels, ALLC acts

as an ALLD in low error levels. Thus, the outcomes realized by a pair of an ALLC and a

Pavlov, at high error levels, tend to be more defecting than cooperative.

In the top right corner in Figure 1, the plot of the payoff of an ALLD when matched

9



Figure 1: Payoffs in the Presence of Errors

Notes: The plots provide the payoffs of ALLC (top left), ALLD (top right), and Pavlov (bottom left) in

the head-to-head competitions with the other strategists for the entire range of errors. We assume that the

error level is common knwoledge and that the probability of committing any type of error is the same; that

is, 0 < ε = δ = ζ < 1 for all levels. The numerical values of the payoff matrix in Table 3 are used.

to one of the three strategists is displayed. The payoff of an ALLD paired with an ALLC

starts off near the “Temptation” payoff, but as the probability of committing implementation

errors approaches 1, the payoff of an ALLD draws near the “Sucker’s” payoff. At this specific

mark, as explained earlier, there is a reversal of roles; that is, an ALLD acts almost as if

it were an ALLC, whereas an ALLC acts almost as if it were an ALLD. The payoff of an

ALLD paired with a twin starts off near the payoff of 1 and draws closer to a payoff of 3

as the likelihood of implementation errors approaches 1. At this specific mark, both ALLDs

behave almost as ALLCs. The payoff of an ALLD when paired with Pavlov starts off near

a payoff of 3 and gradually decreases close to the “Sucker’s” payoff when the likelihood of

committing errors approaches 1.
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In the bottom left corner in Figure 1, the plot of the payoff of a Pavlov when paired

with one of ALLC, ALLD, or Pavlov is presented. The payoff of a Pavlov when paired

with an ALLC starts off close to midway of the “Temptation” and “Reward” payoffs, before

getting closer to the “Punishment” payoff as the likelihood of committing errors approaches

1. The payoff of a Pavlov when matched with an ALLD starts off a little bit higher than the

“Sucker’s” payoff and gradually comes near to the “Temptation” payoff when the likelihood

of committing errors reaches 1. The payoff of a Pavlov paired with a twin starts off near the

“Reward” payoff, but moves closer the “Punishment” payoff as the likelihood of committing

errors approaches 1.

4.2 Taxonomy of Best Response Strategies in the Presence of Er-

rors

In the previous subsection, we plotted the payoffs of the strategies in the head-to-head com-

petitions for the entire range of error levels. Here, we look at one error level each time

to determine the best response strategy for the error level specified. When a unique best

response is indicated, then that best response is also a dominant strategy. The notion of

dominance is significant to the selection dynamics. More specifically, an ecological selection

process will enable the dominant strategy to proliferate to the point where the entire pop-

ulation converges to a pure one implementing that strategy. Thus, depending on the error

level, an evolving population could consist of only ALLDs, only ALLCs, or only Pavlovs. We

present next, examples and discuss the implication for the population dynamics. We then

provide a taxonomy with the best response strategies in the presence of errors.

• Example 1 (ε = δ = ζ = 20%)

In this first example, we assume that implementation errors, perception errors of the op-

ponent’s action, and perception errors of one’s own action are kept constant at 20%. The

payoff matrix of a population consisting of ALLDs, ALLCs, and Pavlovs is indicated in Ta-

ble 4. Clearly, this is a dominance solvable game, where ALLD is the dominant strategy.

Therefore, based on the specific error level, an ecological selection process would converge

to a population consisting of only ALLDs.
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Table 4: Payoff Matrix With ε = δ = ζ = 20%

ALLD ALLC Pavlov

ALLD 1.56 3.84 2.69

ALLC 0.84 2.76 1.79

Pavlov 1.20 3.31 2.24

Notes: Tables 4 − 6 follow the same structure. The payoff matrix indicates the payoffs of a population

consisting of ALLDs, ALLCs and Pavlovs. The payoffs are those of the row agent when paired with a

column agent and reflect the invariant distributions for the error level specified. In this example, the dominant

strategy is ALLD.

Table 5: Payoff Matrix With ε = δ = ζ = 50%

ALLD ALLC Pavlov

ALLD 2.25 2.25 2.03

ALLC 2.25 2.25 2.03

Pavlov 2.34 2.34 2.12

Notes: The dominant strategy is Pavlov.

On the other hand, a different outcome would emerge for an error level of 50%. In this case,

the process would converge to a population consisting of only Pavlovs.

• Example 2 (ε = δ = ζ = 50%)

The payoff matrix in Table 5 corresponds to implementation errors, perception errors of

the opponent’s action, and perception errors of one’s own action kept constant at 50%.

Analogous to the previous example, there is a dominant strategy − Pavlov. Note that an

ALLD and an ALLC earn identical payoffs as, at this error level, the two strategies emulate

the strategy Random. On the other hand, Pavlov is a somewhat less cooperative form of

Random. Kraines and Kraines (2000) show that Random is a poor strategy against strategies

that defect frequently. This result is also demonstrated here.
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The selection dynamics therefore depend crucially on the error levels. Figure 2 is indica-

tive of the error level dependence. The horizontal axis indicates the error level. The bar

indicates any strategy that is a best response to another strategy. Up to the 45.3% error

level, ALLD is the dominant strategy, as it is the best response to each of the strategies.

Between error levels 45.4% and 60.4%, the dominant strategy is Pavlov. Furthermore, from

error level 64.2% to 76%, the dominant strategy is ALLC.

Figure 2: Taxonomy of Best Response Strategies in the Presence of Errors

Notes: The horizontal axis indicates the error level. The bar indicates any strategy that is a best response

to another strategy. When a unique best response is indicated, then that best response is also a dominant

strategy. The numerical values of the payoff matrix in Table 3 are used. For example, ALLD is a dominant

strategy up to the 45.3% error level. Right after, the very thin purple layer indicates that no dominant

strategy exists as ALLD and Pavlov are best response strategies to at least one strategy.

A natural question to ask is what will be the outcome of an ecological process when a

unique best response does not exist. In other words, what would the composition of the

population be like in the range of error levels in transit from one dominant strategy to

another. The population composition could vary based on the proportion of each strategist’s

type and/or the payoffs of the Prisoner’s Dilemma matrix. We illustrate these features of

the population dynamics with an example.
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Table 6: Payoff Matrix With ε = δ = ζ = 62%

ALLD ALLC Pavlov

ALLD 2.48 1.66 1.64

ALLC 2.86 2.00 2.02

Pavlov 2.87 1.99 2.01

Notes: There is no dominant strategy.

• Example 3 (ε = δ = ζ = 62%)

In this last example, we assume that implementation errors, perception errors of the op-

ponent’s action, and perception errors of one’s own action are kept constant at 62%. The

payoff matrix is indicated in Table 6. In contrast to the two previous examples, there is no

dominant strategy. ALLC10 is a best response if the opponent uses ALLC or Pavlov, but

Pavlov is a best response if the opponent uses ALLD. Interestingly, the population dynamics

depend on the proportion within the population of each type and the payoff choices. For

expositional purposes, let us fix the population size at 30 agents. The agents can use any

one of the three strategies, and are paired in a round-robin structure; that is, all agents

are paired with one another in every possible combination. Furthermore, we assume that a

strategy does not play itself. To calculate the average payoff of each pair, we use the values

of the payoff matrix in Table 3. Finally, assume that within the population of 30 agents, x

agents use ALLC, y agents use ALLD, where x, y ∈ N (N = {1, 2, ..., 29}). In particular, the

payoffs, at this error level, are the following:

P (ALLD) = 2.48·(y−1)+1.66·x+1.64·(30−x−y)
29

,

P (ALLC) = 2.00·(x−1)+2.02·(30−x−y)+2.86·y
29

,

P (Pavlov) = 1.99·(x)+2.01·(30−x−y−1)+2.87·y
29

.

If x = 1, y = 19, and 10 play Pavlov, then, at this error level, P (Pavlov) > P (ALLC) >

P (ALLD). In a more balanced population though, where x = 10, y = 10, and 10 play

Pavlov, then P (ALLC) > P (Pavlov) > P (ALLD).

However, to illustrate the sensitivity of population dynamics to the choice of payoffs

in the matrix, we alter the “Temptation” payoff and the “Reward” payoff of Table 3. In

particular, the “Temptation” payoff is changed to 11 from 5, and the “Reward” payoff is

10ALLC is a Nash equilibrium strategy.
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changed to 6 from 3. The “Punishment” payoff and the “Sucker’s” payoff stay the same.

Analogous to the initial case, assume that x = 1 agent uses ALLC, y = 19 agents use ALLD,

and 30 − 1 − 19 = 10 use Pavlov. The payoffs, for an error level kept constant at 62%, are

the following:

P (ALLD) = 5.04·(y−1)+3.24·x+3.19·(30−x−y)
29

,

P (ALLC) = 3.84·(x−1)+3.90·(30−x−y)+5.88·y
29

,

P (Pavlov) = 3.82·(x)+3.86·(30−x−y−1)+5.90·y
29

.

Therefore, P (ALLC) > P (Pavlov) > P (ALLD) in sharp contrast to the former ranking

P (Pavlov) > P (ALLC) > P (ALLD), which was based on the payoff matrix in Table 3.

5 Discussion

TFT was the winner in the in silico tournaments of Axelrod. The performance of TFT led

Axelrod to identify four basic attributes that were necessary for the emergence and survival

of cooperation: (i) provocation in the face of an uncalled-for defection by the other; (ii)

forgiveness after responding to a provocation; (iii) clarity of behavior so that the other agent

can adapt to your pattern of action; and (iv) avoidance of unnecessary conflict by cooperating

as long as the other agent cooperates. Yet Axelrod and Dion (1988) recognized that in the

presence of errors, the emergence of cooperation is hardly inevitable; unnecessary conflict can

only be avoided by generosity, but generosity invites exploitation, and exploitation invites

retaliation.11

In this study, we consider three simple, but fundamental strategies in the presence of

the entire range of errors. Our findings confirm that the emergence of cooperation is not

as likely at any error level. In the error levels where a dominant strategy exists, ALLD is

the dominant strategy at low error levels; Pavlov is the dominant strategy at intermediate

error levels; and ALLC, which acts as if it were an ALLD in low error levels, is the dominant

strategy at high error levels. In almost all of these cases, non-cooperative outcomes emerge;

11Dawes and Thaler (1988) point out that many in vivo experimental studies of the repeated Prisoner’s
Dilemma game, have found that mere suspicion of the possibility of exploitation induces individuals to
engage in a kind of defensive “stinginess” that imparts the emergence of cooperation. More recently, Dal Bó
and Fréchette (2011) provide compelling experimental evidence with human data to suggest that even in
treatments where cooperation can be supported in equilibrium, the level of cooperation may remain at low
levels even after significant experience is obtained. The authors conclude that “these results cast doubt
on the common assumption that agents will make the most of the opportunity to cooperate whenever it is
possible to do so in equilibrium” (p. 412).
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that is, vulnerability to errors prompts non-cooperative outcomes and, oftentimes, results in

long strings of retaliations (i.e. vendettas).

Vulnerability to errors is a real concern in international politics, and has been an especially

poignant one during the Cold War. Speaking of the likelihood of nuclear accidents in the wake

of the Cuban Missile Crisis in 1962, Assistant Secretary of Defense John T. McNaughton

stated that, “the explosion of a nuclear device by accident − mechanical or human − could

be a disaster for the United States, for its allies, and for its enemies. If one of these devices

accidentally exploded, I would hope that both sides had sufficient means of verification and

control to prevent the accident from triggering a nuclear exchange. But we cannot be certain

that this would be the case” (Sagan (1995), p. 53). United States was indeed concerned by

accidents, such as the B-52 crash in 1968, near Thule Air Base in Greenland. Along with the

U.S.S.R., they agreed to take measures to ensure that a future nuclear accident would not

lead the other party to conclude incorrectly that a first strike was under way. Consequently,

on 30 September, 1971, the two superpowers signed the “Agreement on Measures to Reduce

the Risk of Nuclear War.” Each party agreed to notify the other immediately in the event of

an accidental, unauthorized or unexplained incident involving a nuclear weapon that could

increase the risk of nuclear war. They even agreed to use the Moscow-Washington hotline,

which was upgraded at the same time, for any communication between the two countries.

Also, following the downing of Korean Airlines Flight 007 after it strayed over territory

belonging to the Soviet Union, Reagan announced the expansion of the Global Positioning

System (GPS) to civilians, which at the time was only used by the US military. It would

thus be harder for any pilots to drift into Soviet airspace with satellite navigation technology.

In 1987, the Department of Defense formally requested the Department of Transportation

to establish and provide an office to respond to civil users’ needs and to work closely with

the Department of Defense to ensure proper implementation of GPS for civil use.

Finally, we find that in the error levels where a dominant strategy does not exist, the

population composition can vary based on the proportion of each strategist’s type and/or

the payoffs of the Prisoner’s Dilemma matrix. Several studies have considered variations in

the Prisoner’s Dilemma payoff matrix, most often to examine its effect on the likelihood of

cooperation (Busch and Reinhardt (1993); Stephens, Nishimura, and Toyer (1995)). Here,

we go one step further, to show that, not only, the payoff structure affects selection dynamics

and hence the likelihood of cooperation, but also the proportion of each strategist’s type.

Consequently, in such cases it becomes possible to observe “rock-paper-scissors” cycles, where

the selection dynamics can lead to long-term coexistence of the strategies.12

12A lot of examples of long-term co-existence can be found in nature. For instance, there exist three
morphs of the male territorial iguanid lizard Uta stansburiana who differ in their throat color and in their
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6 Concluding Remarks

We study the asymptotic behavior of a finite, but error-prone population of agents that play

the repeated Prisoner’s Dilemma game. Three types of errors are allowed: implementation

errors, perception errors of one’s own action, and perception errors of the opponent’s action.

The space of strategies considered is restricted to simplify the dynamics. We thus concentrate

on an ALLD strategist, an ALLC strategist, and a Pavlov strategist. We first obtain the

asymptotic payoff matrix across the three strategies in the presence of errors, and then derive

numerical results using the payoff matrix from Axelrod’s celebrated tournaments. Crucially,

we consider the entire range of error levels in order to classify best response strategies as

the likelihood of error levels increases from zero to one. We find that for some range of

error levels, a unique best response (a dominant strategy) exists. Moreover, the dominant

strategies at the corresponding error levels lead to mostly non-cooperative outcomes. On

the other hand, in the range of error levels where a dominant strategy does not exist, the

population composition can vary based on the proportion of each strategist’s type and/or

the payoffs of the Prisoner’s Dilemma matrix. In such cases, it is possible to observe “rock-

paper-scissors” cycles.

Our findings highlight that a systematic analysis of the entire range of error levels is an

important and essential aspect of population dynamics. Thus, an interesting direction for

future research would be to use the methodology prescribed to provide a taxonomy of best

response strategies in the presence of errors in alternative games. Ultimately, one would like

to determine better strategies across a vast array of games and for different levels of errors.

Another promising direction for future research would be to assume that there are differences

in the levels of errors across the three error types. For instance, there exist environments

where agents are more likely to commit perception errors of the opponent’s action (perhaps,

due to limited channels in the transmission of information) than implementation errors.

mate-guarding behavior. Males with orange throats are monogamous and succeed in preventing other males
from approaching their mates. Males with dark blue throats are polygamous and less efficient, having to
split their efforts on several females. Males with prominent yellow stripes on their throats do not engage in
female-guarding behavior at all, but roam around in search of sneaky matings (Sinervo and Lively (1996)).
Furthermore, there exist three strains of Escherichia coli bacteria. The colicin-producing strain releases
toxic colicin and produces, for its own protection, an immunity protein. The sensitive strain produces the
immunity protein only. The resistant strain, on the other hand, produces neither the toxic colicin nor the
immunity protein (Kerr, Riley, Feldman, and Bohannan (2002)).
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Dal Bó, Pedro, and Guillaume R. Fréchette. “The Evolution of Cooperation in Infinitely

Repeated Games: Experimental Evidence.” American Economic Review 101, 1: (2011)

411–29.

Dawes, Robyn M., and Richard H. Thaler. “Anomalies: Cooperation.” Journal of Economic

Perspectives 2: (1988) 187–97.

Fudenberg, Drew, and Eric Maskin. “Evolution and Cooperation in Noisy Repeated Games.”

American Economic Review 80: (1990) 274–9.

Imhof, Lorens A., Drew Fudenberg, and Martin A. Nowak. “Evolutionary Cycles of Coop-

eration and Defection.” Proceedings of the National Academy of Science 102, 31: (2005)

797–800.

Kerr, Benjamin, Margaret A. Riley, Marcus W. Feldman, and Brendan J. M. Bohannan.

“Local Dispersal Promotes Biodiversity in a Real-Life Game of Rock-Paper-Scissors.”

Nature 418: (2002) 171–4.

18



Kraines, David P., and Vivian Y. Kraines. “Pavlov and the Prisoner’s Dilemma.” Theory

and Decision 26: (1989) 47–79.

. “Evolution of Learning Among Pavlov Strategies in a Competitive Environment

with Noise.” Journal of Conflict Resolution 39: (1995) 439–66.

. “Natural Selection of Memory-one Strategies for the Iterated Prisoner’s Dilemma

Game.” Journal of Theoretical Biology 203: (2000) 335–355.

Molander, Per. “The Optimal Level of Generosity in a Selfish, Uncertain Environment.”

Journal of Conflict Resolution 29: (1985) 611–8.

Nowak, Martin A., and Robert M. May. Virus Dynamics. Oxford Press, 2000.

Nowak, Martin A., and Karl Sigmund. “Tit-For-Tat in Heterogeneous Populations.” Nature

355: (1992) 250–3.

. “A Strategy of Win-Stay, Lose-Shift that Outperforms Tit-For-Tat in Prisoner’s

Dilemma.” Nature 364: (1993) 56–8.

. “Evolutionary Dynamics of Biological Games.” Science 303: (2004) 793–9.

Nowak, Martin A., Karl Sigmund, and Esam El-Sedy. “Automata, Repeated Games, and

Noise.” Journal of Mathematical Biology 33: (1995) 703–22.

Panchanathan, Karthik, and Robert Boyd. “A Tale of Two Defectors: The Importance

of Standing for Evolution of Indirect Reciprocity.” Journal of Theoretical Biology 224:

(2003) 115–26.

Pfeiffer, Thomas, Stefan Schuster, and Sebastian Bonhoeffer. “Cooperation and Competition

in the Evolution of ATP-Producing Pathways.” Science 292: (2001) 504–7.

Rand, David G., Drew Fudenberg, and Anna Dreber. “It’s the Thought that Counts: The

Role of Intentions in Reciprocal Altruism.”, 2013. Working Paper.

Rapoport, Anatol, and Albert M. Chammah. Prisoner’s Dilemma. Ann Arbor: University

of Michigan Press, 1965.

Sagan, Scott. The Limits of Safety: Organizations, Accidents, and Nuclear Weapons. Prince-

ton, NJ: Princeton University Press, 1995.

Selten, Reinhard. “A Re-examination of the Perfectness Concept for Equilibrium Points in

Extensive Games.” International Journal of Game Theory 4: (1975) 25–55.

19



Sinervo, Barry, and Curt M. Lively. “The Rock–Paper–Scissors Game and the Evolution of

Alternative Male Strategies.” Nature 380: (1996) 240–3.

Stephens, David W., Kinya Nishimura, and K. B. Toyer. “Error and Discounting in the

Iterated Prisoner’s Dilemma.” Journal of Theoretical Biology 176, 4: (1995) 457–69.

Wahl, M. Lindi, and Martin A. Nowak. “The Continuous Prisoner’s Dilemma: II. Linear

Reactive Strategies with Noise.” Journal of Theoretical Biology 200: (1999) 323–38.

Wu, Jianzhong, and Robert Axelrod. “How to Cope With Noise in the Iterated Prisoner’s

Dilemma.” Journal of Conflict Resolution 39: (1995) 183–89.

20



Appendix

The stochastic matrix of an ALLD paired with another ALLD is
ε2 ε(1− ε) ε(1− ε) (1− ε)2

ε2 ε(1− ε) ε(1− ε) (1− ε)2

ε2 ε(1− ε) ε(1− ε) (1− ε)2

ε2 ε(1− ε) ε(1− ε) (1− ε)2

 .

The invariant distribution is πALLD/ALLD = (ε2, ε(1 − ε), ε(1 − ε), (1 − ε)2). The payoff for

agent i using ALLD against agent −i also using ALLD is given by

P(ALLD,ALLD) = Rε2 + Sε(1− ε) + Tε(1− ε) + P (1− ε)2.

Note that the payoff is increasing in ε and does not depend on either type of perception

errors. Therefore, increasing the probability of implementation errors increases the payoff of

an ALLD pair.

The stochastic matrix of an ALLC paired with another ALLC is
(1− ε)2 ε(1− ε) ε(1− ε) ε2

(1− ε)2 ε(1− ε) ε(1− ε) ε2

(1− ε)2 ε(1− ε) ε(1− ε) ε2

(1− ε)2 ε(1− ε) ε(1− ε) ε2

 .

The invariant distribution of the pair is πALLC/ALLC = ((1 − ε)2, ε(1 − ε), ε(1 − ε), ε2). The

payoff for agent i using ALLC against agent −i also using ALLC is given by

P(ALLC,ALLC) = R(1− ε)2 + Sε(1− ε) + Tε(1− ε) + Pε2.

Note that, in this case, the payoff is decreasing in ε. Analogous to an ALLD pair, the payoff

does not depend on either type of perception errors. Thus, increasing the probability of

implementation errors decreases the payoff of an ALLC pair.

Next, consider an ALLC paired with an ALLD. Let ALLC be the row player and ALLD

be the column player. The stochastic matrix is
(1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1− ε)ε (1− ε)2 ε2 (1− ε)ε

 .
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The invariant distribution is πALLC/ALLD = ((1 − ε)ε, (1 − ε)2, ε2, (1 − ε)ε). The payoff for

agent i using ALLC against agent −i using ALLD is given by

P(ALLC,ALLD) = R(1− ε)ε+ S(1− ε)2 + Tε2 + Pε(1− ε).

To obtain the invariant distribution of an ALLD matched with an ALLC, we interchange

the second and third entries of the invariant distribution of an ALLC paired with an ALLD.

The payoff for agent i using ALLD against agent −i using ALLC is given by

P(ALLD,ALLC) = R(1− ε)ε+ Sε2 + T (1− ε)2 + Pε(1− ε).

Note that the payoff of an ALLC is increasing in ε, whereas the payoff of an ALLD is

decreasing in ε.

The stochastic matrix of a Pavlov paired with another Pavlov is
α2 α(1− α) α(1− α) (1− α)2

β2 β(1− β) β(1− β) (1− β)2

β2 β(1− β) β(1− β) (1− β)2

α2 α(1− α) α(1− α) (1− α)2

 ,

where α = (1−δ)(1−ε)(1−ζ)+δε(1−ζ)+ζδ(1−ε)+ζε(1−δ) and β = ε(1−δ)(1−ζ)+ζ(1−
δ)(1−ε)+δ(1−ε)(1−ζ). The invariant distribution of a Pavlov matched with another Pavlov is

messy. The eigenvector is (
α2β−αβ2−α2

2

−α2β+α2

2
+αβ2−β2+β− 1

2

, α
2(−αβ+α

2
+β2−β+ 1

2
)
, α
2(−αβ+α

2
+β2−β+ 1

2
)
, 1). Note

that this daunting eigenvector has been derived with an eigenvalue of 1, but does not reflect

probabilities, as the entries are greater than 1 for ε, δ, ζ > 0. A simple trick to obtain the

probabilities of the invariant distribution is to divide each entry by the sum of the entries.

The payoff for agent i using Pavlov against agent −i also using Pavlov is given by

P(Pavlov,Pavlov) =
R(α2β − αβ2 − α2

2
)χ+ Sαφ+ Tαφ+ Pφχ

ψ
,

where φ = −α2β + α2

2
+ αβ2 − β2 + β − 1

2
, χ = −2αβ + α + 2β2 − 2β + 1, and ψ =

−1
2
(−α + 2β − 2β2 + 2αβ − 1)(−2α + 2β + 2α2 − 2β2 − 1).

A Pavlov paired with an ALLD is presented next. Let Pavlov be the row player and

ALLD be the column player. The stochastic matrix, for α and β as defined above, is
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
αε α(1− ε) ε(1− α) (1− α)(1− ε)
βε β(1− ε) ε(1− β) (1− β)(1− ε)
βε β(1− ε) ε(1− β) (1− β)(1− ε)
αε α(1− ε) ε(1− α) (1− α)(1− ε)

 .

The eigenvector for an eigenvalue of 1 is ( −αε+αε2−βε2
β+ε+αε−2βε−αε2+βε2−1 ,−

−αε+α+βε
β+αε−βε−1 ,

−ε
ε−1 , 1). Analo-

gous to the previous case, we need to divide each entry by the sum of the entries in order to

derive the corresponding probabilities. The payoff for agent i using Pavlov against agent −i
using ALLD is given by

P(Pavlov,ALLD) =
R(−αε+ αε2 − βε2)χ′(ε− 1) + S(αε− α− βε)(ε− 1)φ′ + T (−ε)φ′χ′ + Pφ′χ′(ε− 1)

ψ′
,

where φ′ = β + ε+ αε− 2βε− αε2 + βε2 − 1, χ′ = β + αε− βε− 1, and ψ′ = (ε− 1)(−α +

β + 2αε− 2βε− 1)(β +αε− βε− 1). Furthermore, to obtain the invariant distribution of an

ALLD matched with a Pavlov, we interchange the second and third entries of the invariant

distribution of a Pavlov matched with an ALLD. The payoff for agent i using ALLD against

agent −i using Pavlov is given by

P(ALLD,Pavlov) =
R(−αε+ αε2 − βε2)χ′(ε− 1) + S(−ε)φ′χ′ + T (αε− α− βε)(ε− 1)φ′ + Pφ′χ′(ε− 1)

ψ′
.

Finally, let Pavlov be the row player and ALLC be the column player. The stochastic

matrix, for α and β as defined above, is
α(1− ε) αε (1− ε)(1− α) (1− α)ε

β(1− ε) βε (1− ε)(1− β) (1− β)ε

β(1− ε) βε (1− ε)(1− β) (1− β)ε

α(1− ε) αε (1− ε)(1− α) (1− α)ε

 .

The eigenvector for an eigenvalue of 1 is ( −α(1−ε)+α(1−ε)2−β(1−ε)2
β+(1−ε)+α(1−ε)−2β(1−ε)−α(1−ε)2+β(1−ε)2−1 ,

α(1−ε)−α−β(1−ε)
β+α(1−ε)−β(1−ε)−1 ,

ε−1
−ε , 1).

To derive the probabilities of the invariant distribution, we divide each entry by the sum of

the entries. The payoff for agent i using Pavlov against agent −i using ALLC is given by

P(Pavlov,ALLC) =
R(−α(1− ε) + α(1− ε)2 − β(1− ε)2)χ′′(−ε) + S(α(1− ε)− α− β(1− ε))φ′′(−ε) + T (ε− 1)φ′′χ′′ + Pφ′′χ′′(−ε)

ψ′′
,

where φ′′ = β+ (1− ε) +α(1− ε)− 2β(1− ε)−α(1− ε)2 +β(1− ε)2− 1, χ′′ = β+α(1− ε)−
β(1− ε)− 1, and ψ′′ = ε (α− αε+ βε− 1) (−α + β + 2αε− 2βε+ 1). In addition, to obtain
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the invariant distribution of an ALLC paired with a Pavlov, we interchange the second and

third entries of the invariant distribution of a Pavlov paired with an ALLC. The payoff for

agent i using ALLC against agent −i using Pavlov is given by

P(ALLC,Pavlov) =
R(−α(1− ε) + α(1− ε)2 − β(1− ε)2)χ′′(−ε) + S(ε− 1)φ′′χ′′ + T (α(1− ε)− α− β(1− ε))φ′′(−ε) + Pφ′′χ′′(−ε)

ψ′′
.
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