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Abstract

Structural models lie at the heart of empirical economic analysis. In this study, we
introduce a structural learning model with sophistication to examine the robustness of
the results in Cooper, Ioannou, and Qi (2018) as well as investigate their broader im-
plications. The model is fit to the full dataset using the method of simulated moments.
Ex ante heterogeneity in the beliefs of unsophisticated learners as well as heterogeneity
between unsophisticated and sophisticated learners play a central role in the model’s
ability to track the differences between treatments and features of the experimental
design. Counterfactual exercises evaluate the robustness of the earlier results and in-

vestigate their broader implications.
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1 Introduction

If pay is based on group performance, the presence of strategic complementarities gen-
erated by a weak-link technology coupled with agents’ pessimistic beliefs can lead to
productivity traps; that is, all agents exert low effort in the (correct) expectation that
any effort will be wasted given that no individual can unilaterally improve produc-
tivity. Coordinating on low effort levels is typically modeled as a Pareto dominated
equilibrium in a weak-link game.

Experimental economists have studied a number of mechanisms for escaping pro-
ductivity traps.! Increasing incentives to coordinate at high rather than low effort
levels is a natural approach given existing evidence on the efficacy of performance
pay (e.g. Lazear (2000); Eriksson and Villeval (2008); Dohmen and Falk (2011);
Bandiera, Guiso, Prat, and Sadun (2015)). In spite of the presence of strategic uncer-
tainty, increased incentives have been also shown to increase productivity in multiple
studies of the weak-link game, where the sssignment of individuals to incentive con-
tracts was random and ezogenous (Brandts and Cooper (2006); Hamman, Rick, and
Weber (2007); Brandts, Cooper, and Weber (2015b)). Yet, in field settings, workers
often choose between jobs with differing incentive contracts, making the assignment
of individuals to incentive systems endogenous. Existing studies, in non-interactive
settings (e.g. Cadsby, Song, and Tapon (2007)), consistently find that much of the
impact of increasing incentive pay can be attributed to selection caused by endoge-
nous assignment. Selection works differently in interactive settings, like the weak-link
game, but the same basic intuition applies. The effects of incentive pay may thus be
systematically underestimated if assignment to incentive contracts is exogenous.

Cooper, loannou, and Qi (2018) (henceforth, referred to as CIQ for brevity) ad-
dressed this issue by studying how endogenous assignment of incentive contracts
through a market mechanism affects the ability of groups to escape productivity
traps. From a global point of view, CIQ showed that the overall effect of endogenous
assignment to incentive contracts was neutral; a strong positive effect of endogenous
assignment to high performance pay was offset by an equally large negative effect for
groups that endogenously select low performance pay. CIQ decomposed the effect
of endogenous assignment into selection and strategic anticipation effects. Selection

effects occur because individuals who are relatively optimistic (pessimistic) about the

1See Cooper and Weber (2020) for a survey.



odds of successful coordination at high effort levels select into groups with low (high)
fized pay and high (low) performance pay. Outcomes in weak-link games are strongly
correlated with initial beliefs, hence selection leads to higher (lower) effort with high
(low) performance play. Strategic anticipation refers to the ability of some subjects
to correctly anticipate the positive effects of selection. Strategic anticipation causes
groups with high (low) performance pay to become even more optimistic (pessimistic)
and achieve higher (lower) effort levels. CIQ reported that selection accounts for at
least 73% of the positive effect of endogenous assignment to high performance pay
contracts, but this is a lower bound and the effect could be larger.

CIQ left some important questions unanswered. Precisely how much of the effect of
endogenous assignment to performance pay can be attributed to selection? How would
the effects of endogenous assignment to performance pay change if the environment
was different? For example, how would the results change if group sizes were larger or
workers had differing ability levels? The primary purpose of this study is to address
these questions by developing, fitting, and simulating a structural econometric model
of learning in weak-link games.

Given the central role played by beliefs in weak-link games, we use a belief-based
model of learning in the spirit of stochastic fictitious play (Fudenberg and Levine
(1998)). This basic model cannot capture the effects of selection and strategic an-
ticipation, so we modify it by adding heterogeneity along subjects’ initial beliefs and
subjects’ sophistication in modelling the learning of others. Individuals are either
unsophisticated or sophisticated types. Unsophisticated types are subdivided into
optimists and pessimists. As the names imply, optimists (pessimists) initially ex-
pect other agents to choose high (low) effort levels. In each round, unsophisticated
types best respond (with noise) to their beliefs which are updated from round to
round based on the observed choices of others. Unsophisticated types do not explic-
itly model the decision rules of other agents, and therefore cannot anticipate how
changed incentives or learning will affect the behavior of others. Similar to a level-k
model, sophisticated types model all other individuals in their group as unsophisti-
cated types, anticipating their learning and decision rules. Critically, because they
explicitly model the decision making of other agents, sophisticated types anticipate
the effects of selection.

We fit the model to the full dataset using the method of simulated moments.

Simulations show that the fitted model captures the main qualitative features of the



data. The structural model is then modified to estimate the true effect of selection.
The intuition is simple: the 73% estimate reported by CIQ relied on a strong assump-
tion that the experimenters could perfectly predict which incentive contract, high or
low performance pay, an agent would be assigned to. In reality, these predictions
were imperfect, biasing the estimated selection effect downwards. We modify the
structural model to account for errors in predicting which incentive contract will be
assigned to an agent. Doing this, we conclude that more than 90% of the effect of
endogenous assignment to incentive contracts can be attributed to selection. In other
words, virtually all of the effect of endogenous assignment to incentive pay is due to
selection.

Including (i) heterogeneity in the initial beliefs of unsophisticated learners, and
(ii) heterogeneity in the ability of agents to anticipate the decision rules of others im-
proves the fit of the model to the data. This does not necessarily imply that adding
heterogeneity along both dimensions improves the model’s ability to track differences
across treatments as treatment effects are not part of the objective function. We
investigate the importance of heterogeneity by fitting alternative models that either
eliminate one or both types of heterogeneity. Based on simulations, the model with no
heterogeneity does poorly at tracking the data, largely missing the effect of endoge-
nous selection. Adding only heterogeneous initial beliefs captures the major features
of the data better than adding only heterogeneous sophistication, and adding sophis-
ticated learners in addition to heterogeneous initial beliefs only marginally improves
the model’s ability to track the main qualitative features of the data. This is not to
deny the presence of sophisticated learners in the population. Rather, the point is
to distinguish between statistical and economic significance. Selection drives most of
the effects of endogenous assignment to incentive contracts, and heterogeneous priors
provide a parsimonious model of selection effects. Sophisticated types are necessary
to capture strategic anticipation, but this only plays a minor role in generating the
effects of endogenous assignment to incentive contracts.

Any experiment is necessarily a limited exercise, exploring a single environment
and only considering a limited number of treatments. Having a structural model
makes it possible to inexpensively explore counterfactuals; but an obvious concern
with using simulations to make predictions beyond the confines of the original ex-
perimental design is the possibility that the model cannot predict behavior out of

sample. The experimental design of CI(QQ makes it straight forward to address this



issue. Three of their treatments (Random Assignment, Auction, and Sort) were used
to identify the selection and strategic anticipation effects, and thus only data from
these treatments are necessary to identify the parameters of the structural model.
The fourth treatment (Reverse Sort) was used to illustrate the strength of selection.
For our purposes, data from the Reverse Sort treatment serves as a good test of the
model’s ability to fit out of sample. We fit the data to the other three treatments
and then use simulations to predict outcomes for the Reverse Sort treatment. The
simulated results track the main features of the Reverse Sort treatment, giving us
greater confidence in predictions based on the model.

Having established the model’s validity, we use it to explore variations of the
CIQ experimental design. In one variation, we allow for heterogeneous initial beliefs
(pessimists vs. optimists) and heterogeneous ability. Heterogenous ability is intro-
duced into the model through differing effort costs, where the higher the individual’s
ability the lower the effort cost. Social surplus is maximized when agents with low
effort costs, regardless of their initial beliefs, select the high performance pay. Yet
the simulations find that selection of the increased performance pay prioritizes op-
timism over low effort costs. This promotes efficiency through high effort choices,
but fails to achieve full efficiency due to frequent selection of individuals with high
effort costs. In another variation, we change the group size. We show that less of
the impact of endogenous assignment can be attributed to the selection effect as the
group size grows. Intuitively, efficient coordination becomes more difficult with larger
group sizes. Selection into high performance pay always has a large positive effect,
but with larger group sizes there remains more room for additional improvement due
to strategic anticipation.

The contribution of our paper is not the learning model per se. The basic model
is based on the well-known stochastic fictitious play model of Fudenberg and Levine
(1998), and several existing models feature sophisticated learners, notably the sophis-
ticated EWA model of Camerer, Ho, and Chong (2002). Nor are we the first to use
a learning model to study behavior in weak-link games (e.g. Brandts and Cooper
(2006); Brandts, Cooper, Fatas, and Qi (2015a)). Instead, our contribution lies in
illustrating how a structural model of learning can be used to expand what can be
learned from the experimental dataset. Some of what we do resembles what other pa-
pers have already explored. For example, Crawford and Broseta (1998) use a learning

model to decompose the effects of buying the right to participate in a median game



into optimistic subjects and forward induction effects closely akin to our selection and
strategic anticipation effects. Their results are quite different, putting roughly even
weight on the two factors. Both the games being played and the learning models differ
quite a bit between their paper and ours. Other papers have identified the presence
of sophisticated learners.

What differs in our paper is the focus on economic rather than statistical signif-
icance; allowing for sophisticated learners improves the fit of the model, but does
little to improve the model’s ability to track major features of the data. The greatest
source of novelty in our work comes from our analysis of counterfactuals. For any
good experiment, it is easy to think of informative new treatments. All experiments
are limited by the choice of specific parameter values (e.g. group size, effort costs
to name a few). In a world of finite budgets and subject pools, it is unrealistic that
all possible treatments and constellations of parameters can be explored via new ses-
sions. We argue that counterfactuals provide a useful tool for expanding the domain
of experimental results. Obviously, this must be done with a degree of caution. We
careful validate our model’s ability to predict out of sample and recognize that pre-
dictions based on simulation exercises necessarily lose validity the further we get from
the original experimental environment. Subject to these caveats, counterfactual ex-
ercises vastly expand our understanding of how endogenous assignment to incentive

contracts affects performance.

The paper adheres to the following plan. We provide next a brief description of
the experimental design in CIQ. Then, in Section 3, we present the structural model
of learning. In Section 4, we provide the details of the estimation procedure while,
in Section 5, we conduct counterfactual exercises. Finally, in Section 6, we conclude

and offer suggestions for future research.

2 Experimental Design

The experimental design in Cooper, loannou, and Qi (2018) applies a variation of
the Turnaround game, where game play consists of twenty rounds, split into two
blocks of ten rounds each. The subjects play in groups of four. In the first block, the
subjects are randomly assigned to their group to play the Coordination game with

a low incentive pay. The first block is designed to induce coordination failure. In



the second block, the assignment of subjects into groups as well as their assignment
to low or high pay contracts varies by the treatment. The incentive system in the
experimental design implements a linear revenue-sharing scheme as only the group
output, which is equivalent to the minimum effort of the group, is observed. The
payoff of a subject depends on a fixed pay, the cost of effort based on the subject’s
effort choice, and a bonus that depends on the minimum effort of the group. Two
different types of contracts are used in the experiment. Relative to the contract
with high incentive pay (i.e. Contract 2), the contract with low incentive pay (i.e.
Contract 1) assumes a higher fixed pay, but a lower bonus factor. In summary,
Contract 2 features higher incentives to coordinate at high effort levels than Contract
1.

CIQ implement the following four treatments. In the Random treatment, the
subjects are randomly assigned to groups and contracts. In the Auction treatment,
the subjects participate in a reverse English auction in which bids indicate willingness
to take lower fixed pay in exchange for increased performance pay. The auction
mimics, albeit imperfectly, the selection process in the market mechanism. In the
Sort treatment, the subjects’ characteristics and initial choices are used to predict
which incentive contract the subjects would have been assigned to had the selection
occurred via the market mechanism. Predicted contract assignments are exogenously
implemented to (imperfectly) reproduce the market’s outcome.? The Reverse Sort
treatment, flips the contract assignments relative to the Sort treatment. Thus, low
performance pay is assigned to subjects who would probably be assigned to high
performance pay through the market mechanism (and vice versa). The interested

reader should refer to the paper for the details.

3 Structural Learning Model

We next present the model’s setup. We then indicate the explicit assumptions in
the beliefs and decision rules of (sophisticated and unsophisticated) subjects in each

treatment.

2Therefore, this treatment preserves the effect of selection as it inherits the market’s tendency
to assign optimists to high performance pay, but eliminates the effect of strategic anticipation by
depriving subjects of any information allowing them to anticipate the selection process.



3.1 Setup

Let e € {1,2,3,4,5} correspond to the effort level chosen by a subject. If a subject
chooses e = 1, then this maps to an effort level of 0; if a subject chooses e = 2, then
this maps to an effort level of 10, and so on and so forth. At the highest effort level,
a subject chooses e = 5, which maps to an effort level of 40. Let m € {1,2,3,4,5}
correspond to the minimum effort level of the other 3 subjects in the group. Payoffs
of subject i are determined by a contract consisting of a base wage, an effort cost,
and a bonus rate. There are two contracts, henceforth denoted by superscript c¢. In
Contract 1, ¢ = 1, base wage is W; = 300 ECUs, and in Contract 2, ¢ = 2, base wage
is W5 = w ECUs, which varies across different experimental sessions. The payoft of
subject with contract ¢, who chooses effort level e and faces other subjects’ minimum

effort level m, is

7(e,m) = Wy —5-(e—1)x 10+ B; - (min{e,m} — 1) x 10,
(e,mlw) = w—>5-(e—1)x 10+ By - (min{e,m} — 1) x 10.

For the following exposition, we model the experiment for the duration of twenty
rounds, split into two blocks of 10 rounds each. Subjects’ payoffs differ by the contract
they are assigned in the beginning of a block. A subject retains the same contract
throughout the entire block. Without loss of generality, let m;; (e, m) denote the payoff
function of subject ¢ in round t. All subjects are assigned to Contract 1 in Block 1.
In addition, every subject is randomly assigned to a group of four subjects at the
beginning of Block 1. In the beginning of Block 2, subjects’ contracts and groups are
re-assigned. Half of the subjects are assigned to Contract 1, while the other half is
assigned to Contract 2. The re-assignment rules differ across treatments. We consider
four treatments: Random, Auction, Sort, and Reverse Sort.

The model consists of two types of subjects: the sophisticated subjects, and the
unsophisticated ones. We denote unsophisticated learners with superscript u, and
denote sophisticated learners with s. Unsophisticated learners are randomly assigned
to two subtypes that differ in their initial beliefs about others’ behavior. Optimists
initially believe that all other subjects will choose 40 (i.e. the highest possible effort
level). Pessimists initially believe that all other subjects will choose 0 (i.e. the

lowest possible effort level).? Sophisticated learners are also randomly assigned to two

3Using a specification with two subtypes rather than a continuum makes fitting the model com-



subtypes. One subtype has sophisticated learners with ‘strategic anticipation’ while
the other has sophisticated learners without. The two subtypes differ in how they
model belief formation during and after the auction in the respective treatment. The
model generates dropout times as noisy best responses to beliefs about effort levels
in Block 2 under each contract.* The distinguishing feature of sophisticated types
with strategic anticipation is that they take into account how the auction changes the
expected proportion of optimists assigned to each contract. Unsophisticated types
and sophisticated types without strategic anticipation do not account for optimists
being more likely to be assigned to Contract 2 in Block 2. Sophisticated types with
strategic anticipation form beliefs by modeling the decision-making of unsophisticated
types, both optimists and pessimists, in the auction. As the value of base wage
changes, they update the expected composition of unsophisticated subtypes (optimists
vs. pessimists) under each contract. Sophisticated types with strategic anticipation
understand that pessimists tend to choose Contract 1 and optimists tend to choose
Contract 2. This makes them drop out later in the auction and choose higher (lower)
effort levels if they are assigned to Contract 2 (Contract 1).°

Next, we provide the detailed model specification of the two types of subjects.
For notational convenience, the contract ¢ superscript is suppressed in the following

subsections.

3.1.1 Unsophisticated Subjects

An unsophisticated subject updates his/her beliefs based on the current-round expe-
rience. Let N_;(e) be the number of subjects other than subject i choosing effort
level e. Let Wy (e) be the subject’s previous-period experience; thus, the updating
rule is

Witri(e) = 6 - Wi(e) + N_i(e),

putationally feasible and eases interpretation of the results. Our qualitative results do not depend
on this simplifying assumption.

4Given that we are, in essence, using a Vickrey auction, beliefs about others’ strategies in the
auction do not play an important role.

5The learning model only includes sorting based on beliefs, as opposed to sorting based on other
personal characteristics. This is appropriate given that personal characteristics have little effect on
dropout times beyond their effect on the probability of choosing 40 in the first round. This indicates
that personal characteristics affect dropout times through their impact on initial beliefs.



where ¢ is the depreciation parameter to be estimated from the data. This updating
rule is drawn from the standard stochastic fictitious play model. The initial period
weights for the optimists are [0,0,0,0,w|, and the weights for the pessimists are
[w,0,0,0,0]. In other words, optimists initially believe that all other subjects will
choose 40 and pessimists initially believe that all other subjects will choose 0. The
initial value of w is a parameter to be estimated.

The proportion of unsophisticated subject types in the population are parame-
ters estimated from the data. The probability of being subtype [ is pi,es, and the
probability of being subtype h is ji,,. An unsophisticated subject believes that the
probability of any other subject in the group choosing effort level e in the next round

t+11is
Wzt—i-l(e)

Zk 1 zt+1( )

With the belief p}; ., (e), an unsophisticated subject can infer the probability of min-

PZH( )

imum effort being m in round ¢ + 1 is ¢}, ,(m), where

ta+1 (szt—i-l ) - ( Z péﬁt—l—l(k‘)) ) Vm € {17273v4} (1)

k=m+1
qgﬁ+1(5) = (p?t+1(5))3~

Notice that in the initial period, optimists’ values are p(5) = 1 and ¢?(5) = 1.
Conversely, pessimists’ values are p! (1) = 1 and ¢{(1) = 1. Given belief ¢%(m), the
expected payoff of a subtype u player choosing effort e is

Eri(e Z q;;(m) - my(e,m) for u = h,l and Ve.

We assume that the probability of a type u subject choosing effort level e follows a

logit specification, where

exp(A - Emi(e))
> it exp(A - By (k)

Each unsophisticated subject takes a random draw to determine his actual effort

di(e) = for u = h,l and Ve. (2)

choice based on this probability @}, in each round ¢.



3.1.2 Sophisticated Subjects

A sophisticated subject is denoted with superscript s. Our modeling of the sophis-
ticated subjects and their learning process is similar to that of the sophisticated
EWA model of Camerer, Ho, and Chong (2002). Sophisticated subjects assume all
other subjects in the group are unsophisticated. A sophisticated subject knows how
unsophisticated subjects’ beliefs evolve and can therefore anticipate other subjects’
behaviors. However, a sophisticated subject cannot identify other subjects in the
group, therefore, cannot track individual players’ behaviors over time. We assume a
sophisticated subject i uses the average of other subjects” N_j;;(e) to formulate the
updating rules of the unsophisticated types. For example, if a sophisticated type
observes effort levels 5,3,2,1 in the group, and knows his own effort choice, which
is 2, then he can infer that the subject choosing 5 would have N = [0,0, 1,1, 1], the
subject choosing 3 would have N = [1,0,0,1, 1], and the subject choosing 1 would
have N = [1,0,1,1,0]. So the average is N = [2/3,0,2/3,1,2/3]. The same updating
rule is used where

mt+1 (6) =¢- Wit<€) + Nfit<€)~

An unsophisticated person’s effort choice probability ®}° can be readily computed.
Notice that @’ is the same for all other subjects in the group. This probability is
different from the actual choice probability unsophisticated subjects used.

A sophisticated subject does not know the type of the other subjects. He believes
the probability of another subject being type [ is 6; and the probability of another
subject being type h is 1 — 6;. The latter may or may not be consistent with the
distribution of unsophisticated subject types in the population, where the probability
of being subtype [ is 6 = # and the probability of being subtype h is 1 — 6.

In Block 1, beliefs about 6 are correct, so 6; = 0 Vi € {i : Sophisticated}. In
Block 2, beliefs may be incorrect if sophisticated subjects fail to anticipate the effect
of selection. The two subtypes of sophisticated subjects differ in their ability to
anticipate the effects of selection caused by the auction (i.e. strategic anticipation).
We denote the proportion of the subtype with the ability of strategic anticipation
in the population ug,. Therefore, the probability of the subtype without strategic
anticipation is 1 — fipes — flopt — Msa-

On one hand, a sophisticated subject without strategic anticipation still assumes

0, = 0 after the auction has taken place. In other words, a sophisticated learner

10



without strategic anticipation does not adjust his beliefs post-auction for the effect
of selection. On the other hand, a sophisticated subject with strategic anticipation
alters his post-auction beliefs 6; based on his second-block contract assignment in
the Auction treatment. No such adjustment takes place in the other treatments as
the subject has no reason to anticipate selection effect, so that 6; = 0 in all other
treatments.

A sophisticated subject’s belief of the distribution of effort choices by another
subject j #£ i is

pf+1(e) = éitJrlq)Zfﬂl(e) + (1 - 9it+1)¢ﬁr1(e> Ve.

With the belief p;, ., (e), a sophisticated subject can infer the probability of minimum
effort being m in round t+1. We denote this probability as ¢}, ;(m), which is similarly
defined as in Equation (1). Therefore, the expected payoff of sophisticated subject i

choosing effort level e in the next round is

5
Em;(e) =) qs(e)mi(e,m) Ve
m=1

We assume that the probability of a type s subject choosing effort level e follows a

logit specification, where

5 (o) - _ SPOLT(E)

==z - (3)
> pe1 XP(AETS ()

The actual effort choice based on this probability ®;, in each round ¢ is randomly

drawn for each sophisticated subject.’

6Both Camerer, Ho, and Chong (2002) and Brandts, Cooper, Fatas, and Qi (2015a) allow for the
possibility that some sophisticated types are forward looking. In other words, some sophisticated
types can anticipate that their current actions will affect others’ future choices and engage in strategic
teaching to manipulate future outcomes. We have developed and fit a version of our model that
includes forward looking types, but cannot reject the null hypothesis that the fraction of such types
is zero. We have therefore dropped this feature from this model. None of our conclusions would be
affected if forward looking types were included in the model.

11



3.1.3 Reset

At the beginning of Block 2 (or round 11), reassignment of groups and contracts
occurs. We assume that the experience weights of subjects are reset at this point.
The reset experience weight VT/LH, is a weighted average of realized experience at the
end of Block 1, WW; 11, and a subject’s initial beliefs weight W, (; that is,

Win=p Wio+(1—p) Wi,

where the reset parameter p is fit from the data.

3.2 Treatments

We consider the four treatments in CIQ, which differ in the rules of assigning subjects

into contracts and of forming new groups within each contract in the second block.

3.2.1 Random

Each individual subject draws a random shock g; from a common distribution. We
rank g;’s from high to low. Then, half of the subjects who have ¢;’s above the median
shock value are assigned to Contract 1 in Block 2. The other half of the subjects
who have ¢;’s below the median shock value are assigned to Contract 2 in Block
2. Subjects are then randomly assigned into groups. Sophisticated subjects do not
change their beliefs of the composition of the unsophisticated subtypes, so 6; = 6,
Vi € {i : Sophisticated}.

3.2.2 Auction

In the Auction Treatment, Contract 2 base wage ranges from 400 to 0. Every 5
seconds, the base wage drops by 5 ECUs. In every instant in time, a subject needs
to decide whether to press a ‘Contract 1’ button to drop out of the Auction process.

An unsophisticated subject, given reset experience weight Wi,n, can formulate
beliefs about the distribution of minimum effort in a future group ¢;, and the

expectation on payoffs in round 11 under Contract 1 and under Contract 2 with any

12



base wage; that is,
5
EﬁZ’lCl:l(e) = Z (1311<m) - e, m),
m=1
5
Eﬁ;iclzz(dw) = Z q1;u,11(m> -T2 (e, m|w).
m=1

Using the expected payoffs, we can calculate the effort choice probability (P;‘t’czl (e) and
(IDZ;CZQ(e\w) for every possible contract. Therefore, the expected payoff of choosing
Wl = 3 0T e) - Eﬁ;f’flzl(e), and expected payoff of

having Contract 2 with base wage w is E7">(w) = 3., &% (e|w) - E7’r2f’101:2(e|w).

7

Contract 1 is always E7w

Assume subjects make noisy dropout decisions based on a logit decision rule, where
the logit parameter is (. At any given w, the probability of subject i choosing Contract

1 for any given wage w; is

d(uw;) = exp(¢ - BR )
T e BT Hexp(C- BT (w)

The above probability, d(w), represents the likelihood of an unsophisticated subject
dropping out at base wage w, conditional on the subject not having chosen to drop
out at any base wage w’ > w. We can iteratively define the unconditional probability

of the subject dropping out at the base wage w, p}jmpout(w), as follows:

psropout(w = 400) = d(w = 400)7 Du(w = 400) = psropout(w = 400)7
Piropout(W) = (1 = D*(w +5)) - d(w); D"(w) = D"(w 4 5) + Piyopous (W), Vw € {395,390, ..., 5,0},

where D"(w) is the probability of the subject dropping out before or at base wage w.

Compared to an unsophisticated subject, a sophisticated subject has the follow-
ing information when making contract decisions. First, if 2n subjects participate
in an auction, a sophisticated subject considers the other 2n — 1 subjects’ contract
choices. Second, a sophisticated subject does not know the type of other subjects,
and assumes everyone else is unsophisticated. Furthermore, the subject knows the
population distribution of subtypes, and there is a 6 chance that the other sub-
ject is an unsophisticated pessimist. Third, a sophisticated subject forms beliefs on

unsophisticated subjects’ experience weight Wf‘l (m). The subject assumes that all

13



unsophisticated subjects of the same subtype have the same beliefs. So using the
same updating rules, the sophisticated subject can predict D*(w|q};) for each sub-
type of subject for any given base wage w, where D" is the probability that a subtype
u subject will choose to drop out of the auction at or before wage w.

A sophisticated type without strategic anticipation believes that the probability
of having an unsophisticated pessimist within his own contract in Block 2 is still 6,
which is the same as in the population. With the auction taking place, a sophisticated
type with strategic anticipation has the ability to anticipate that optimists are more
likely to be assigned to Contract 2, and pessimists are more likely to be assigned to
Contract 1, so that the relative proportions of pessimists to optimists are different
across contracts. Therefore, the probability of meeting a pessimist 8 can vary by
individual subject’s past experience in Block 1 and depends on which contract a
sophisticated subject is ultimately assigned to. We model strategic anticipation and
how beliefs of § are formed as follows.

Without loss of generality, assume there are n; type h subjects and n; type [
subjects, where n; = (2n — 1) — ny,. From a sophisticated subject’s perspective, the
probability of facing n;, type h subjects and n; type [ subjects is (27:;1) (@)™ (1 —6).
Given any n; and n, the probability of exactly i € (0,2n — 1] individuals dropping

out at w is

Prob(alm, n)
=30 ()t Dy (L) 0o D e

n—x

when = € [0,n] if ny <7, and x € [0 — np, 0] if 7, > 7.
Based on Bayes’ rule, given any n;, the probability that exactly n € (0,2n — 1]
individuals, and exactly x € [0, min{n;,n}| of type [, have dropped out at or before

any base wage w is

Pdropout(x’ w, ﬁ|nl)
() (D! (w)*(1 = D! (w))" == - (55) (D)) #(1 = D))o~

n—x

T (D )AL= D ()=t (L) (D))= (1 = D)) ==

Knowing the probability of other subjects’ dropout wages w, a sophisticated learner

decides upon his own dropout wage w’. In particular, a sophisticated subject under-
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stands that for any w to become the base wage of Contract 2 in the second block,

two possibilities exist:

Case 1: exactly n unsophisticated subjects dropped out at or before w, and the

sophisticated subject chose a dropout wage w’ < w; or

Case 2: exactly n — 1 unsophisticated subjects dropped out at or before w, and

the sophisticated subject chose a dropout wage w' > w.

In case 1, the sophisticated individual gets Contract 2. If exactly number z of type
[ individuals are in Contract 1, the sophisticated subject knows that exactly n;, — x
individuals with Contract 2 are of subtype [, and exactly n—1— (n;—x) are of subtype
h. So the sophisticated subject with strategic anticipation expects the probability of
facing a subtype [ in the Block 2 group to be 6 = “—F. A sophisticated subject’s ex-
pected payoff conditional on getting Contract 2 is Eﬁfflz *(w, z,ny). Similarly, in case
2, the sophisticated individual gets Contract 1. If exactly number x individuals with
Contract 1 are of subtype [, then exactly n —1—x of them are subtype h subjects. So
the sophisticated subject with strategic anticipation expects the probability of facing
a subtype [ subject in the Block 2 group to be 6 = —%+. A sophisticated subject’s
expected payoff conditional on getting Contract 1 is Eﬁi’flzl(:p, n;). Therefore, taking
into account the probability of getting exactly x individuals of subtype [ in either
contract, the expected payoff of a sophisticated individual with strategic anticipation
is:

Case 1: (2717; 1) (0)™ (1 — )1t pdropout (g, qy, n|nl)El:[Z’f1:2(w, x,n),
2n —1

ny

Case 2: ( )(9)"’(1 — )2t pdropout (g 4y m — l\nl)El:If”flzl(x, n).
Sophisticated subjects of both subtypes can make a mistake in choosing contracts.
The potential for mistakes is represented by an additional randomly drawn logit
error term €, which is i.i.d. across different contracts. Similar to unsophisticated
subjects, we can derive the dropout wage w; and the probability of dropping out for
sophisticated types.”
For all subjects, we simulate their choices of dropout wages w;’s. We then rank

dropout wage w;’s from high to low. Then, the half of the subjects who have w;’s

"There is no closed-form probability of base wage choices for the sophisticated individuals. To
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above the median dropout wage are assigned to Contract 1 in Block 2. The other
half of the subjects who have w;’s below the median dropout wage are assigned to
Contract 2 in Block 2. The group assignment of subjects within a contract is random

as in the actual experimental setting.

3.2.3 Sort and Reverse Sort

We use the same contract assignments from the simulation of the Auction treatment
in the Sort treatment. Sophisticated subjects do not change their beliefs of the
composition of the unsophisticated subtypes, so 6; = 6, Vi € {i : Sophisticated}.
However, two additional steps are added to simulate the group assignment of subjects.

First, the model allows for the possibility that the Sort and Reverse Sort treat-
ments imperfectly replicate the selection mechanism from the Auction treatment by
adding an additional noise term to the dropout time used to assign a subject to a
group and contract in the respective treatments. The sorting of subjects is based
upon w; + &;, where ¢ ~ N(0,¢) is the sorting error. The standard deviation ¢ is
a parameter estimated from the data. The standard deviation of this noise term
determines how well the Sort and Reverse Sort treatments replicate the selection
mechanism from the Auction treatment. A standard deviation of zero implies perfect
replication. As the standard deviation of the noise term increases, more errors are
made in terms of assigning individuals to the wrong contract. Then, the half of the
subjects who have w; + ¢;’s above the median dropout wage are assigned to Contract
1 in Block 2. The other half of the subjects who have w; 4 ¢;’s below the median
dropout wage are assigned to Contract 2 in Block 2.

In addition, subjects are sorted within a contract when assigned to groups as they
were in the actual experimental setting. This means, for example, the four subjects

with the four lowest predicted dropout wages w; + ¢€; are sorted into the same group

simplify computation, we approximate 6" by

2n—1 min{n;,n}

Ns,c= 2n—1 n n—1l-n TOpOU z
D S D i L R et

n;=0 =0

R 2n—1 min{n;,n} o — 1
AT VD

ng =0 =0

n, —x

)<9>"l<1 = )P PRt (g, ) L
-

n

Monte Carlo tests indicate that simulated subjects’ behaviors do not change too much under such
an approximation.
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in Contract 2, while the four subjects with the four highest predicted dropout wages
are sorted into the same group in Contract 1.

As for the Reverse Sort treatment, we rank the predicted dropout wage w; + &;’s
from low to high. Then, the half of the subjects who have w; + ¢;’s below the median
dropout wage are assigned to Contract 1 in Block 2. The other half of the subjects
who have w; + ¢;’s above the median dropout wage are assigned to Contract 2 in
Block 2. We also sort subjects into groups based on their dropout wages. Subjects
are also sorted within a contract when assigned to groups. Sorting errors in the Sort

and the Reverse Sort treatments are assumed to have the same standard deviation .

4 Estimation Procedure

Due to the structural complexity and non-linearity of the learning model, there is
no closed-form solution to the estimator. We therefore rely upon a moment-based
simulation method (Method of Simulated Moments) to estimate the model. This is a
mixture model, so we do not estimate the type or subtype of any specific individual,
but estimate instead the distribution of types and subtypes within the population.
To ensure a reasonable efficiency of our estimator, we generate 100 simulated datasets
for each session of each treatment. In each of the 100 simulations, for each simulated
subject, we redraw the noise term of effort choice in each round, the noise term
of auction (in the Auction treatment only), and the type of the individual (while
maintaining the same proportions in the population).

The moments are the average efforts of each round in Block 1 (10 moments), the
average efforts of each round in Block 2 by contract and by treatment (10 rounds
X 2 contracts x 4 treatments). So we have a total of 90 moments. Let the set of
moments be denoted by I'. For any particular set of parameters O, we take a set of
the aforementioned random draws for each subject and simulate subjects’ behavior
in an experimental session. For each session, we simulate the model J = 100 times
using different sets of random draws. Each subject receives a random draw in the
beginning of time to determine his/her own type and subtype (whether he/she is
a sophisticated subject with/without strategic anticipation, a subtype [ subject or
a subtype h subject). The type and subtype of a subject are fixed for the entire

simulated experimental session. The unconditional probabilities of subject types are
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estimated parameters. In particular, the fraction of pessimistic unsophisticated types
iS fipes, the fraction of optimistic unsophisticated types is jiop, and the fraction of
sophisticated types with strategic anticipation is us,. The fraction of sophisticated
types without strategic anticipation is 1 — fipes — flopt — [tsa- The set of noise terms
and type draws are fixed for all iterations of the estimation routine. To be consistent,
we also use the same noise/type draws for all of the estimation and counter-factual
exercises in the paper.

For each j € {1,2, ..., J}, we determine the simulated moments fm((%) Then, the
optimal estimator is defined as ©* = argming |I' — & 27‘;:1 f]} / 4% [F — 3 Z}]:1 fj :
where W is the optimal weighting matrix. Standard errors are obtained by boot-
strapping. The estimation procedure takes into account that subjects’ behaviors are
potentially correlated across periods at the individual level. In other words, draws
of the error term (see Equation 2 and 3) are independently distributed across differ-
ent simulated subjects, but can be correlated for the same individual across different
rounds. The estimated parameter values from fitting the full model to the data are

presented in Table 1.

4.1 Alternative Model Specifications

The full model contains four different types of players, yielding a relatively complex
model. It is reasonable to ask whether this complexity serves any useful purpose,
either in terms of improving our ability to fit the data or, more importantly, our
ability to track major features of the data and to predict out of sample. We fit four
models, the full model and three models that simplify the full model by reducing the

number of types. Ordered from least to most complex, the four models are as follows.

Model 1: Rather than having optimists and pessimists, all unsophisticated learn-
ers initially believe that all other subjects will choose effort 40 with probability 6™
and effort 0 with probability 1 — 6™, where the parameter 8™ is estimated from the
data. There are no sophisticated learners (fipes + ptopr = 1). Model 1 has no ex ante

heterogeneity and no sophisticated learners.

Model 2: There are two subtypes of unsophisticated learners, optimists and pes-
simists, modeled as in the full model. There are no sophisticated learners (fipes+fopt =

1). Model 2 allows for ex ante heterogeneity in beliefs but contains no sophisticated
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Table 1: ESTIMATED LEARNING MODEL PARAMETERS

Parameter Brief Description Estimated Values

Hpes Fraction of pessimistic unsophisticated types 0.185***
(0.027)

opt Fraction of optimistic unsophisticated types 0.706**
(0.034)

Ihsa Fraction of sophisticated types with strategic anticipation 0.031***
(0.003)

w Initial experience weight 86.135**
(29.176)

0 Experience weight depreciation factor 0.859***
(0.029)

A Effort choice logit parameter 0.458"**
(0.025)

p Reset of belief in round 11 0.998***
(0.025)

¢ Auction dropout choice logit parameter 0.173**
(0.065)
S Sort error standard deviation 85.900*
(44.670)
SSE 1,202.20

Notes: The standard errors are provided in the parentheses. SSE is an acronym for the sum of
squared errors. *** and * indicate statistical significance at the 1%, and 10%, respectively. The

estimated proportion of sophisticated types without strategic anticipation in the population is 1 —

Hpes — MHopt — Msa-

learners.

Model 3: This model adds a different type of heterogeneity than in Model 2.
Similar to Model 1, all unsophisticated learners initially believe that all other subjects
will choose effort level 40 with probability 8™ and effort level 0 with probability 1—6™,
where the parameter 6™ is estimated from the data. Model 3 includes sophisticated
learners. Since there is only one type of unsophisticated learner, there can be no
selection of different types of unsophisticated learners into contracts. It follows that
Model 3 does not include sophisticated learners with strategic anticipation as there is

nothing for them to anticipate. We estimate the fraction of unsophisticated learners
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Hunsoph, While the fraction of sophisticated learners is 1 — ftynsopn. Model 3 does not
allow for exr ante heterogeneity in the beliefs of unsophisticated learners, but does

allow for heterogeneity between unsophisticated and sophisticated learners.

Model 4: This is the full model presented in the manuscript. Model 4 allows
for ex ante heterogeneity in the beliefs of unsophisticated learners and heterogeneity

between unsophisticated and sophisticated learners.

Table 2: ESTIMATED PARAMETERS OF ALTERNATIVE MODELS

Parameter Model 1 Model 2 Model 3 Model 4
Hpes 0.185***
(0.027)
Hopt 0.715*** 0.706***
(0.041) (0.034)
lhsa 0.031***
(0.003)
Hunsoph 0.654***
(0.075)
w 43.787*** 131.556** 79.6547** 86.135***
(17.892) (64.128) (36.900) (29.176)
0 0.990*** 0.870*** 0.990*** 0.859***
(0.026) (0.032) (0.036) (0.029)
A 0.020*** 0.400*** 0.021*** 0.458***
(0.002) (0.073) (0.004) (0.025)
P 0.938*** 0.999*** 0.999*** 0.998***
(0.026) (0.027) (0.024) (0.025)
¢ 2.189 0.169*** 0.585*** 0.173**
(2.827) (0.075) (0.185) (0.065)
S 0.060 59.987 0.163* 85.900*
(0.084) (43.701) (0.090) (44.670)
om 0.998*** 0.999***
(0.025) (0.028)
SSE 6,041.98 1,934.62 3,600.39 1202.20

Notes: The standard errors are provided in the parentheses. SSE is an acronym for the sum of

squared errors. *** ** and * indicate statistical significance at the 1%, 5% and 10%, respectively.
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We fit all four models to the full dataset; the parameter estimates are presented
in Table 2.8 After fitting the model, we generate 100 simulated datasets for each of
the fitted models. Table 3 compares the average effort in Block 2, broken down by

treatment and contract, for the experimental data and the simulated data.

Table 3: AVERAGE EFFORT ACROSS ALTERNATIVE MODELS

Random Auction Sort Reverse Sort
Contr. 1 Contr.2 Contr.1 Contr.2 Contr.1 Contr.2 Contr.1 Contr.2
Data 21.17 31.34 9.64 39.81 13.45 37.48 30.03 16.06
Model 1 17.63 31.42 17.58 31.48 17.64 31.41 17.68 31.40
Model 2 19.02 28.13 8.17 39.90 8.51 39.30 38.18 16.36
Model 3 15.21 29.03 11.17 33.15 11.15 33.18 19.84 25.06
Model 4 16.75 28.62 7.23 39.95 8.53 37.32 31.43 19.67

Notes: The Table displays a comparison of average efforts in the second block by contracts and by

treatments across alternative models. The actual averages are provided in the first row.

Fitting a model to the data does not guarantee either the ability to track existing
data or to make predictions. The former point can easily be seen by comparing the
experimental data and simulated data for Model 1 in Table 3. At no point are the
simulated data from Model 1 particularly close to the experimental data. The failure
to track the data is especially vivid in the Reverse Sort treatment, where even the
flipped relationship between the two contracts is incorrect in the simulated data. It
is not surprising that Model 1 does poorly at tracking the data, as it contains no
mechanism for capturing either the selection effect or the effect of strategic anticipa-
tion. Models 2 and 3 do better than Model 1 at tracking the data, but still have some
failures (notably in the Reverse Sort treatment).

Table 4 explores the ability of the various models (the full model and the three

simplified models) to replicate one of the most important features of the experimental

8The inclusion of both subtypes of sophisticated learners improves the fit of the full model.
On one hand, compared to the full model, if the model only allows for sophisticated learners with
strategic anticipation, the sum of squared errors increases from 1202.2 to 1483.8. On the other hand,
if the model only allows for sophisticated learners without strategic anticipation, the sum of squared
errors increases from 1202.2 to 1432.7. The estimated fraction of sophisticated learners with strategic
anticipation is small (i.e. only 3.1%). Both strategic anticipation and sorting errors (captured by
¢) contribute to differences in average effort between the simulated Auction and Sort treatments. If
the model is fitted to the data without sorting error (¢ = 0), the fraction of sophisticated learners
with strategic anticipation increases to 9.8%.
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data. CIQ calculate that 73% of the effect of endogenous assignment to high perfor-
mance pay can be attributed to selection. One of our main uses of the learning model
is to explore how this figure would change if the Sort treatment perfectly replicated
the selection mechanism from the Auction treatment. This exercise has little value if
the model does a poor job of approximating the 73% figure with imperfect replication.
The first column of Table 4 reports, for the experimental data and simulated data
for each of the four models, the percentage of the effect of endogenous assignment to
high performance pay that can be attributed to selection.” The final column of Table
4 examines one of the most striking features of our data; that is, the reversal in aver-
age effort between the two contracts in the Reverse Sort treatment. Specifically, for
the experimental data and the simulated data, the last column reports the difference
in average effort in Block 2 between Contract 2 and Contract 1 in the Reverse Sort

treatment.

Table 4: COMPARISON OF SELECTION ACROSS ALTERNATIVE MODELS

% Due to Selection Reverse Sort
Contract 2 Contract 2 - Contract 1
Data 73% —13.97
Model 1 —20% 13.72
Model 2 95% —21.83
Model 3 101% 5.22
Model 4 7% —11.76

Notes: The first column provides the effect of endogenous assignment to high performance pay that
can be attributed to selection across the alternative models. The last column reports the difference in

average effort in the second block between Contract 2 and Contract 1 in the Reverse Sort treatment.

The full model (Model 4) does well along both dimensions, but it is the most
complex of the four models. Is that complexity necessary to track major features of the
experimental data, or is it sufficient to only incorporate heterogeneous initial beliefs
(but no sophisticated learners) as in Model 2, or to only add sophisticated learners

(but no heterogeneity of initial beliefs for unsophisticated learners) as in Model 37

9This is the difference between average effort in Block 2 in the Sort and Random Assignment
treatments divided by the difference between average effort in Block 2 in the Auction and Random
Assignment treatments.
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Table 4 indicates that the complexity of the full model is necessary. Because Model 2
has no mechanism for incorporating strategic anticipation, it overestimates the effect
of selection (95% in the simulated data vs. 73% in the data) and, as a side effect,
overestimates the difference between Contracts 1 and 2 in the Reverse Sort treatment
(-21.83 in the simulated data vs. -13.97 in the data). While we don’t expect any model
to be perfect, these shortcomings are far larger than those for Model 4. Model 3 is even
worse, missing the flipped relationship between Contracts 1 and 2 in the Reverse Sort
treatment. Model 3 also allows for selection, but similar to Model 2 cannot capture the
effects of strategic anticipation. Strategic anticipation relies on sophisticated learners
recognizing that the auction will sort different types of unsophisticated learners into
different contracts. When there is no heterogeneity of unsophisticated learners, this
mechanism breaks down. The added complexity of Model 4 improves the model’s
ability to fit the data in the standard sense, meaning that the added parameters are
statistically significant (see Table 1) but, more importantly, the added features are

necessary to capture the most interesting features of our experimental data.

4.2 QOut-of-Sample Prediction

As shown in the previous subsection, subjects’ heterogeneity adds complexity to the
model but improves the fit and is necessary for the fitted model to track important
features of the experimental data. Fitting a model to the data does not guarantee that
the fitted model will do a good job of tracking existing data. The differences between
treatments are not part of the objective function per se, and fitting one treatment
well may come at the expense of fitting another poorly or missing qualitative or
quantitative differences between treatments.'’

To validate our model’s ability to predict out-of-sample, we estimate the model
using data from the Random, Auction and Reverse Sort treatments, and simulate the
model using the resulting parameters to predict outcomes in the Sort Treatment. In

CIQ, the Sort treatment is designed to separate the effect of selection from the effect

10T see this point, consider an incredibly simple-minded model of individual decision-making in
our experiments; thus, in all rounds of all treatments under all contracts, subjects pick effort level
i € {0, 10, 20, 30,40} with probability p;. There is nothing that prevents us fitting this simple-minded
model to our data, but it is obvious that, even using fitted values for pg, p1g, etc., it would fail to
track the dynamics in the data as well as the differences between the various treatments. It would
also fail to predict data from new treatments.
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of strategic anticipation. Therefore, we use the model’s ability to predict the Sort
treatment to validate its ability to make out-of-sample predictions.

A comparison of the estimated parameters for the model fitted from the full
dataset and the model fitted from three of the four treatments is presented in Table
5. The parameters change very little. As a result, the differences in goodness of fit,
as represented by the sum of squared errors, are negligible. This means, even when
the model is fitted to the data of only three treatments, its predictions of the fourth
(Sort) treatment are almost as good as the fully fitted version. In Block 2 of the Sort
treatment under Contract 2, the predicted average effort of 37.32 based on fitting
the model to only three treatments is almost identical to the average effort of 37.30
when fitting all four treatments, and the experimental data of 37.48. As a point of
comparison, if we fit Models 1, 2, or 3 to the data from the Random, Auction and
Reverse Sort treatments and simulate data for the Sort treatment, simulated average
effort in Block 2 for the Sort treatment differs substantially for all three models from
the observed data (30.33, 39.30, and 33.48 for Models 1, 2, and 3, respectively).

Based on the same out-of-sample prediction simulations, Table 6 expands on the
preceding points. We carry out a similar exercise to what was reported in the first
column in Table 4. The full model does well at predicting average effort in the Sort
treatment, and hence does a good job of predicting the percentage of the effect of
endogenous assignment to high performance pay that can be attributed to selection.
The other models once again do poorly.

One point to note here is that the full model might not be the best possible model
of learning from the vast universe of possible models either in terms of tracking
the major features of our experimental data or predicting out-of-sample within the
framework of our experiment. Identifying the best model is well beyond the scope
of this paper. Rather, our goal is to show that our model does a reasonably good
job of tracking major features of the experimental data as well as predicting out-of-
sample while a simplified version of our model would do far worse. This gives us some
confidence in the results of the counterfactual exercises based on the full model that

come next.
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Table 5: OUT-OF-SAMPLE PREDICTIONS OF ESTIMATED LEARNING PARAMETERS

Parameter Brief Description Fit 3, Predict Sort Fit 4

Ipes Fraction of pessimistic unsophisticated types 0.186*** 0.185***
(0.019) (0.027)

Hopt Fraction of optimistic unsophisticated types 0.708*** 0.706***
(0.016) (0.034)

Hsa Fraction of sophisticated types with strategic anticipation 0.030*** 0.031***
(0.003) (0.003)

w Initial experience weight 84.253*** 86.135***
(25.669) (29.176)

) Experience weight depreciation factor 0.863*** 0.859***
(0.031) (0.029)

A Effort choice logit parameter 0.457*** 0.458**
(0.040) (0.025)

p Reset of belief in round 11 0.990*** 0.998***
(0.014) (0.025)

¢ Auction dropout choice logit parameter 0.172** 0.173**
(0.067) (0.065)
< Sort error standard deviation 86.033** 85.900*
(35.004) (44.670)
SSE 1,206.27 1,202.20

Notes: In the Fit 3, Predict Sort column, we estimate the model using data from the Random,
Auction and Reverse Sort treatments, and simulate the model using the resulting parameters to
predict outcomes in the Sort treatment. The Fit 4 column, is reproduced from Table 1 for comparison
purposes. The standard errors are provided in the parentheses. SSE is an acronym for the sum of
squared errors. *** ** and * indicate statistical significance at the 1%, 5% and 10%, respectively.

The estimated proportion of sophisticated types without strategic anticipation in the population is
1- Mpes — Mopt — Msa-
5 Counterfactual Simulations

In the following Subsection, we highlight the usefulness of structural models to evalu-
ate the robustness of the earlier results. In the subsequent Subsection, we depict the

vastness of structural models in investigating the broader implications of the results.
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Table 6: COMPARISON OF SELECTION ACROSS ALTERNATIVE MODELS WHEN
FiTt 3 To PREDICT SORT

% Due to Selection Reverse Sort
Contract 2 Contract 2 - Contract 1
Data 73% —13.97
Model 1 96% 12.19
Model 2 95% —22.51
Model 3 101% 5.17
Model 4 7% —11.92

Notes: The first column provides the effect of endogenous assignment to high performance pay that
can be attributed to selection across the alternative models. The last column reports the difference in
average effort in the second block between Contract 2 and Contract 1 in the Reverse Sort treatment.
In both columns, we estimate the model using data from the Random, Auction and Reverse Sort
treatments, and simulate the model using the resulting parameters to predict outcomes in the Sort

treatment.

5.1 Evaluating Robustness

We consider next an important caveat to the main results in CIQ. The study finds
that around 73% of the effect of making high performance pay endogenous is due to
selection. But we know that this understates the effect of selection because the Sort
treatment replicates imperfectly the selection mechanism from the Auction treatment.
To estimate the true effect of selection, we compare the results from two simulation
exercises. The first simulates the full model including the noise term for predicted
dropout times. We use the estimated parameters (Fit 4) of the full model (Model
4). The second set of simulations is identical to the first except we do not include an
error term for the predicted dropout times in the Sort and Reverse Sort treatments.
In other words, we set the standard deviation parameter ¢ = 0. This allows us to
estimate what would happen in the counterfactual case where we perfectly replicated
the selection mechanism from the Auction treatment.

The results of the two simulation exercises are shown in Figure 1 with the Sort
treatment on the left and the Reverse Sort on the right. Based on the experimental
data, CIQ calculated that 73% of the effect of making high performance pay endoge-

nous is due to selection. Doing the same calculation using simulated data from the full
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Figure 1: SIMULATIONS WITH TOBIT ERROR
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Notes: The Figure displays the two simulation exercises. The first exercise simulates the full model
including the noise term for predicted dropout times, where the estimated parameters of the full
model are used. The second exercise is identical to the first except we do not include an error term
for the predicted dropout times in the Sort and Reverse Sort treatments.

model, which includes errors in assigning subjects to contracts for the Sort treatment,
yields a figure of 77%. There is little difference between the selection effect calculated
using the experimental and simulated data. For the simulations without errors in the
assignment of subjects to contracts, we find that, in the Sort treatment, 93% of the
effect of making high performance pay endogenous is due to selection. The difference
between the two sets of simulations is of more interest than the levels. If the effect
due to selection is underestimated by about the same amount in the experimental
data and the simulated data with errors, the true effect of selection is roughly 90%

of the effect of making high performance pay endogenous.
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5.2 Broader Implications

The first counterfactual exercise considers an additional dimension of heterogeneity:
ability. Heterogeneous ability is introduced into the model through differing effort
costs. Using simulations, we investigate how multidimensional selection affects the
efficiency properties of endogenous selection into incentive contracts.

In the Baseline simulations, all subjects had the same effort cost of 5 ECUs per
unit of effort expended as in the original experimental design. As a counterfactual, we
allow effort costs to vary within the subject population. In particular, half the pop-
ulation has an effort cost of 3, and the other half has an effort cost of 7 (henceforth,
referred to as ‘Three-Seven’ simulations). We subdivide the Three-Seven simulations
into two variants. The first (Three-Seven/Hetero) uses the same distribution of types
(pessimists, optimists) as the Baseline simulations. Three-Seven/Hetero differentiates
simulated subjects along two dimensions: initial beliefs and ability, thus allowing for
multidimensional sorting. The second variant, Three-Seven/Homo, imposes homoge-
neous beliefs. Specifically, simulated subjects in Three-Seven/Homo initially believe
that the other three members of their group will all choose 40 with probability 0.805
and will otherwise all choose 0. This value of ‘optimism’ was chosen to equalize the
initial effort levels for the Three-Seven/Hetero and Three-Seven/Homo simulations.

In both settings, the average effort cost is five. However, half of the simulated
subjects in the Three-Seven simulations face an effort cost higher than the Contract
1 bonus rate of 6. Hence, simulated subjects with an effort cost of 7 should only
cooperate if they are assigned to Contract 2 with a bonus rate of 10. As a result,
the Three-Seven simulations have lower average efforts in either Block 1 or, under
Contract 1, in Block 2 of the Random and the Auction treatments than in the Base-
line simulations.'!' The three sets of simulations have comparable average effort levels
under Contract 2 for Block 2. In the Random Treatment, the Baseline has an av-
erage effort of 28.6 under Contract 2, compared to 27.8 in the Three-Seven/Hetero
simulations; both of these values are substantially higher than the average of 15.72
in the Three-Seven/Homo simulations. In the Auction Treatment, almost all groups

coordinate efficiently under Contract 2 for all three sets of simulations — the average

HThe average effort in Block 1 is 16.9 in the Baseline as compared to 10.1 in Three-Seven/Hetero
and 2.21 in Three-Seven/Homo. In Block 2 under Contract 1, in the Baseline simulations, average
efforts are 16.8 and 7.2 in the Random and Auction treatments, respectively. The parallel values
are 11.4 and 0.8 in Three-Seven/Hetero, and 3.23 and 0.00 in Three-Seven/Homo.

28



effort is essentially 40 in all three cases.

Figure 2: SIMULATIONS OF SELECTION WITH ASYMMETRIC COSTS AND BELIEFS
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Notes: The Figure shows the distribution of subjects assigned to Contract 2 by their beliefs and
effort costs in both the Random and Auction treatments of the Three-Seven/Hetero experiment.

Note that a different cluster of bars is shown for each cost level in each treatment.

In the Baseline simulations, efficient coordination is sufficient to maximize surplus.
This is not true with asymmetric costs. If Contract 2 yields efficient coordination
while Contract 1 leads to coordination at very low effort levels, surplus is maximized
by assigning low-cost types to Contract 2. This raises an interesting question: how
does selection into Contract 2 work for Three-Seven/Hetero where multidimensional
sorting is possible? It is obvious that all low-cost optimists would be endogenously
assigned to Contract 2, and all high-cost pessimists would be assigned to Contract
1. What is less obvious is where the high-cost optimists and low-cost pessimists will
be assigned. The key insight comes from Figure 2, which shows the distribution of
subjects assigned to Contract 2 by their beliefs and effort costs in both the Random
and Auction treatments of the Three-Seven/Hetero experiment. Note that a different

cluster of bars is shown for each cost level in each treatment. For example, in the
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Auction treatment, 70% of the subjects assigned to Contract 2 are low-cost optimists
and 27% are high-cost optimists.

Figure 2 shows that virtually everyone assigned to Contract 2 in the Auction
treatment will be an optimist. To the extent that there are not enough low-cost
optimists to fill all the openings in Contract 2, the remaining slots are taken by
high-cost optimists. Virtually all of the low-cost pessimists are assigned to Contract
1. Underlying this, even high-cost optimists find Contract 2 more attractive than
Contract 1 because they anticipate a large bonus. Pessimists never think Contract 2
is attractive because they anticipate no bonuses. Low-cost pessimists would earn more
under Contract 2 if efficient coordination occurred, but they view this as extremely
unlikely. If effort levels are expected to be close to zero in equilibrium, it no longer
matters what effort costs are.

From an efficiency point of view, effort costs only affect overall surplus when sub-
jects actually exert efforts. It is surplus maximizing to have both low-cost optimists
and low-cost pessimists assigned to Contract 2. This is what happens in Three-
Seven/Homo; all simulated subjects have the same beliefs, hence sorting can only
take place on the basis of effort costs. Not surprisingly, the Auction Treatment al-
most entirely assigns the low-cost types to Contract 2. The effort levels are basically
identical to those in Three-Seven/Hetero (0 for Contract 1 and 40 for Contract 2), but
the average effort cost is 36% higher in the heterogenous beliefs’ case. Therefore, the
overall efficiency is lower in the heterogeneous beliefs’ case. When selection is possible
along multiple dimensions, selection may not take place along the dimension that is
most important for efficiency. Having either optimists or low-cost types assigned to
Contract 2 (where efficient coordination occurs) is desirable but, ideally, you would
get enough optimists to generate efficient coordination while getting all of the low-
cost types in Contract 2. Selection favors optimism over low costs because costs only
matter when high effort is expected. Thus, while selection still has an enormously
positive effect, it need not resolve all inefficiencies. This is not an insight we could
have derived from our original experiment or from other existing experiments with
selection along a single dimension. Using our structural model to do counterfactual
exercises makes it possible to gain new insight from existing data at relatively low
cost.

In the second exercise, we hold all of the model’s parameters fixed and enlarge

the simulated sessions to allow for 20 groups while varying the number of groups
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receiving Contract 2 from 0 to 20. For this exercise, we simulate the average effort
for each contract under the Auction treatment. Figure 3 graphs the average effort in
Round 20 as a function of the percentage of groups assigned to Contract 2. Average
effort is broken down by contract with the dotted line showing the weighted average
across contracts. For any proportion of Contract 2 groups, average effort is far higher
in Contract 2 than in Contract 1. But as the proportion of groups using Contract 2
gets large, the average effort with Contract 2 drops. Once all groups use Contract
2, selection cannot affect performance with Contract 2 since both the optimists and
the pessimists are assigned to Contract 2. Thus, strategic anticipation does not
play a role. With no selection, there is nothing to anticipate. The average effort,
weighted across contracts, rises gradually as the proportion of groups using Contract
2 rises. Moving from a regime with only Contract 1 to a regime with only Contract
2 has a modest positive effect on productivity. This effect must equal the direct
incentives’ effect as measured by the difference between Contracts 1 and 2 in the
Random treatment. With no selection and, by extension, no strategic anticipation,
only the direct effect of higher incentives to coordinate at high effort levels remains.

As a final counterfactual exercise, we increase the group size from four to six. In
the experimental data of the CIQ study, effort levels were quite high for Contract
2 in the Sort treatment. This leaves little room for improvement in the Auction
treatment (limiting the measured effect of strategic anticipation). Using groups of six
makes it harder to coordinate at high effort levels, implying that the ceiling at 40 plays
a smaller role. Simulating the game with groups of four, 78% of the improvement
with endogenous assignment to Contract 2 is due to selection (slightly more than the
73% figure in the real data). The proportion of the improvement with endogenous
assignment attributed to selection drops to 66% when we simulate the game with
groups of six. Moving to the larger groups decreases the importance of selection
and, by extension, increases the importance of strategic anticipation. The mixture of
subjects’ types and subtypes is held fixed across the two simulation exercises, hence
the increased importance of strategic anticipation must be due to a less binding
ceiling allowing more room for improvement in the Auction treatment. There are two
points to be taken from this counterfactual exercise. First, the measured effect of
strategic anticipation depends both on the distribution of types and subtypes within
the population and the strategic environment. Second, while the quantitative effect

of selection is reduced, the qualitative conclusions change little. Most of the effect of
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Figure 3: SIMULATIONS OF AUCTION TREATMENT WITH 20 GROUPS
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Notes: The Figure graphs the average effort in Round 20 as a function of the percentage of groups
assigned to Contract 2. Average effort is broken down by contract with the dotted line showing the

weighted average across contracts.

endogenous assignment to incentive contracts is due to selection.

6 Concluding Remarks

Structural models lie at the heart of empirical economic analysis. Their breadth
stretches from offering an organizing principle to understand the data to simulating
counterfactuals. This study uses a structural learning model that combines stochastic
fictitious play with sophisticated learning. Here, the model is used to evaluate the
robustness of the results in the study of Cooper, loannou, and Qi (2018) and to
investigate their broader implications. The model’s parameters are estimated from

the data. Fz ante heterogeneity in the beliefs of unsophisticated learners as well as
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heterogeneity between unsophisticated and sophisticated learners play a central role
in our model’s ability to track the data.

Ultimately, structural models can widen and further the scope of the original
experiments. First, an estimated structural model identifies unobservable subjects’
characteristics, such as pessimistic and optimistic beliefs, strategic anticipation, and
experience weights. Second, using these identified characteristics, researchers can con-
duct counterfactual experiments without conducting additional experiments. Coun-
terfactual experiments help researchers break the limitation of the original experi-
mental designs, which can often be limited by extraneous factors, such as financial
support, time constraints and the size and composition of the experimental subject
pool. Finally, structural model estimations can make ex ante predictions that in-
form the design of future experiments. For example, the model here finds that the
importance of strategic anticipation depends on the strategic environment. Future
experimental designs can test this prediction by manipulating contract assignment

mechanisms and the levels of subjects’ information.
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