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Abstract

Structural models lie at the heart of empirical economic analysis. In this study, we

introduce a structural learning model with sophistication to examine the robustness of

the results in Cooper, Ioannou, and Qi (2018) as well as investigate their broader im-

plications. The model is fit to the full dataset using the method of simulated moments.

Ex ante heterogeneity in the beliefs of unsophisticated learners as well as heterogeneity

between unsophisticated and sophisticated learners play a central role in the model’s

ability to track the differences between treatments and features of the experimental

design. Counterfactual exercises evaluate the robustness of the earlier results and in-

vestigate their broader implications.

∗The usual disclaimer applies.
†Mailing Address: Department of Economics, University of Iowa, Iowa City, IA. Email: david-j-cooper@uiowa.edu
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1 Introduction

If pay is based on group performance, the presence of strategic complementarities gen-

erated by a weak-link technology coupled with agents’ pessimistic beliefs can lead to

productivity traps; that is, all agents exert low effort in the (correct) expectation that

any effort will be wasted given that no individual can unilaterally improve produc-

tivity. Coordinating on low effort levels is typically modeled as a Pareto dominated

equilibrium in a weak-link game.

Experimental economists have studied a number of mechanisms for escaping pro-

ductivity traps.1 Increasing incentives to coordinate at high rather than low effort

levels is a natural approach given existing evidence on the efficacy of performance

pay (e.g. Lazear (2000); Eriksson and Villeval (2008); Dohmen and Falk (2011);

Bandiera, Guiso, Prat, and Sadun (2015)). In spite of the presence of strategic uncer-

tainty, increased incentives have been also shown to increase productivity in multiple

studies of the weak-link game, where the sssignment of individuals to incentive con-

tracts was random and exogenous (Brandts and Cooper (2006); Hamman, Rick, and

Weber (2007); Brandts, Cooper, and Weber (2015b)). Yet, in field settings, workers

often choose between jobs with differing incentive contracts, making the assignment

of individuals to incentive systems endogenous. Existing studies, in non-interactive

settings (e.g. Cadsby, Song, and Tapon (2007)), consistently find that much of the

impact of increasing incentive pay can be attributed to selection caused by endoge-

nous assignment. Selection works differently in interactive settings, like the weak-link

game, but the same basic intuition applies. The effects of incentive pay may thus be

systematically underestimated if assignment to incentive contracts is exogenous.

Cooper, Ioannou, and Qi (2018) (henceforth, referred to as CIQ for brevity) ad-

dressed this issue by studying how endogenous assignment of incentive contracts

through a market mechanism affects the ability of groups to escape productivity

traps. From a global point of view, CIQ showed that the overall effect of endogenous

assignment to incentive contracts was neutral; a strong positive effect of endogenous

assignment to high performance pay was offset by an equally large negative effect for

groups that endogenously select low performance pay. CIQ decomposed the effect

of endogenous assignment into selection and strategic anticipation effects. Selection

effects occur because individuals who are relatively optimistic (pessimistic) about the

1See Cooper and Weber (2020) for a survey.
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odds of successful coordination at high effort levels select into groups with low (high)

fixed pay and high (low) performance pay. Outcomes in weak-link games are strongly

correlated with initial beliefs, hence selection leads to higher (lower) effort with high

(low) performance play. Strategic anticipation refers to the ability of some subjects

to correctly anticipate the positive effects of selection. Strategic anticipation causes

groups with high (low) performance pay to become even more optimistic (pessimistic)

and achieve higher (lower) effort levels. CIQ reported that selection accounts for at

least 73% of the positive effect of endogenous assignment to high performance pay

contracts, but this is a lower bound and the effect could be larger.

CIQ left some important questions unanswered. Precisely how much of the effect of

endogenous assignment to performance pay can be attributed to selection? How would

the effects of endogenous assignment to performance pay change if the environment

was different? For example, how would the results change if group sizes were larger or

workers had differing ability levels? The primary purpose of this study is to address

these questions by developing, fitting, and simulating a structural econometric model

of learning in weak-link games.

Given the central role played by beliefs in weak-link games, we use a belief-based

model of learning in the spirit of stochastic fictitious play (Fudenberg and Levine

(1998)). This basic model cannot capture the effects of selection and strategic an-

ticipation, so we modify it by adding heterogeneity along subjects’ initial beliefs and

subjects’ sophistication in modelling the learning of others. Individuals are either

unsophisticated or sophisticated types. Unsophisticated types are subdivided into

optimists and pessimists. As the names imply, optimists (pessimists) initially ex-

pect other agents to choose high (low) effort levels. In each round, unsophisticated

types best respond (with noise) to their beliefs which are updated from round to

round based on the observed choices of others. Unsophisticated types do not explic-

itly model the decision rules of other agents, and therefore cannot anticipate how

changed incentives or learning will affect the behavior of others. Similar to a level-k

model, sophisticated types model all other individuals in their group as unsophisti-

cated types, anticipating their learning and decision rules. Critically, because they

explicitly model the decision making of other agents, sophisticated types anticipate

the effects of selection.

We fit the model to the full dataset using the method of simulated moments.

Simulations show that the fitted model captures the main qualitative features of the
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data. The structural model is then modified to estimate the true effect of selection.

The intuition is simple: the 73% estimate reported by CIQ relied on a strong assump-

tion that the experimenters could perfectly predict which incentive contract, high or

low performance pay, an agent would be assigned to. In reality, these predictions

were imperfect, biasing the estimated selection effect downwards. We modify the

structural model to account for errors in predicting which incentive contract will be

assigned to an agent. Doing this, we conclude that more than 90% of the effect of

endogenous assignment to incentive contracts can be attributed to selection. In other

words, virtually all of the effect of endogenous assignment to incentive pay is due to

selection.

Including (i) heterogeneity in the initial beliefs of unsophisticated learners, and

(ii) heterogeneity in the ability of agents to anticipate the decision rules of others im-

proves the fit of the model to the data. This does not necessarily imply that adding

heterogeneity along both dimensions improves the model’s ability to track differences

across treatments as treatment effects are not part of the objective function. We

investigate the importance of heterogeneity by fitting alternative models that either

eliminate one or both types of heterogeneity. Based on simulations, the model with no

heterogeneity does poorly at tracking the data, largely missing the effect of endoge-

nous selection. Adding only heterogeneous initial beliefs captures the major features

of the data better than adding only heterogeneous sophistication, and adding sophis-

ticated learners in addition to heterogeneous initial beliefs only marginally improves

the model’s ability to track the main qualitative features of the data. This is not to

deny the presence of sophisticated learners in the population. Rather, the point is

to distinguish between statistical and economic significance. Selection drives most of

the effects of endogenous assignment to incentive contracts, and heterogeneous priors

provide a parsimonious model of selection effects. Sophisticated types are necessary

to capture strategic anticipation, but this only plays a minor role in generating the

effects of endogenous assignment to incentive contracts.

Any experiment is necessarily a limited exercise, exploring a single environment

and only considering a limited number of treatments. Having a structural model

makes it possible to inexpensively explore counterfactuals; but an obvious concern

with using simulations to make predictions beyond the confines of the original ex-

perimental design is the possibility that the model cannot predict behavior out of

sample. The experimental design of CIQ makes it straight forward to address this
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issue. Three of their treatments (Random Assignment, Auction, and Sort) were used

to identify the selection and strategic anticipation effects, and thus only data from

these treatments are necessary to identify the parameters of the structural model.

The fourth treatment (Reverse Sort) was used to illustrate the strength of selection.

For our purposes, data from the Reverse Sort treatment serves as a good test of the

model’s ability to fit out of sample. We fit the data to the other three treatments

and then use simulations to predict outcomes for the Reverse Sort treatment. The

simulated results track the main features of the Reverse Sort treatment, giving us

greater confidence in predictions based on the model.

Having established the model’s validity, we use it to explore variations of the

CIQ experimental design. In one variation, we allow for heterogeneous initial beliefs

(pessimists vs. optimists) and heterogeneous ability. Heterogenous ability is intro-

duced into the model through differing effort costs, where the higher the individual’s

ability the lower the effort cost. Social surplus is maximized when agents with low

effort costs, regardless of their initial beliefs, select the high performance pay. Yet

the simulations find that selection of the increased performance pay prioritizes op-

timism over low effort costs. This promotes efficiency through high effort choices,

but fails to achieve full efficiency due to frequent selection of individuals with high

effort costs. In another variation, we change the group size. We show that less of

the impact of endogenous assignment can be attributed to the selection effect as the

group size grows. Intuitively, efficient coordination becomes more difficult with larger

group sizes. Selection into high performance pay always has a large positive effect,

but with larger group sizes there remains more room for additional improvement due

to strategic anticipation.

The contribution of our paper is not the learning model per se. The basic model

is based on the well-known stochastic fictitious play model of Fudenberg and Levine

(1998), and several existing models feature sophisticated learners, notably the sophis-

ticated EWA model of Camerer, Ho, and Chong (2002). Nor are we the first to use

a learning model to study behavior in weak-link games (e.g. Brandts and Cooper

(2006); Brandts, Cooper, Fatas, and Qi (2015a)). Instead, our contribution lies in

illustrating how a structural model of learning can be used to expand what can be

learned from the experimental dataset. Some of what we do resembles what other pa-

pers have already explored. For example, Crawford and Broseta (1998) use a learning

model to decompose the effects of buying the right to participate in a median game
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into optimistic subjects and forward induction effects closely akin to our selection and

strategic anticipation effects. Their results are quite different, putting roughly even

weight on the two factors. Both the games being played and the learning models differ

quite a bit between their paper and ours. Other papers have identified the presence

of sophisticated learners.

What differs in our paper is the focus on economic rather than statistical signif-

icance; allowing for sophisticated learners improves the fit of the model, but does

little to improve the model’s ability to track major features of the data. The greatest

source of novelty in our work comes from our analysis of counterfactuals. For any

good experiment, it is easy to think of informative new treatments. All experiments

are limited by the choice of specific parameter values (e.g. group size, effort costs

to name a few). In a world of finite budgets and subject pools, it is unrealistic that

all possible treatments and constellations of parameters can be explored via new ses-

sions. We argue that counterfactuals provide a useful tool for expanding the domain

of experimental results. Obviously, this must be done with a degree of caution. We

careful validate our model’s ability to predict out of sample and recognize that pre-

dictions based on simulation exercises necessarily lose validity the further we get from

the original experimental environment. Subject to these caveats, counterfactual ex-

ercises vastly expand our understanding of how endogenous assignment to incentive

contracts affects performance.

The paper adheres to the following plan. We provide next a brief description of

the experimental design in CIQ. Then, in Section 3, we present the structural model

of learning. In Section 4, we provide the details of the estimation procedure while,

in Section 5, we conduct counterfactual exercises. Finally, in Section 6, we conclude

and offer suggestions for future research.

2 Experimental Design

The experimental design in Cooper, Ioannou, and Qi (2018) applies a variation of

the Turnaround game, where game play consists of twenty rounds, split into two

blocks of ten rounds each. The subjects play in groups of four. In the first block, the

subjects are randomly assigned to their group to play the Coordination game with

a low incentive pay. The first block is designed to induce coordination failure. In
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the second block, the assignment of subjects into groups as well as their assignment

to low or high pay contracts varies by the treatment. The incentive system in the

experimental design implements a linear revenue-sharing scheme as only the group

output, which is equivalent to the minimum effort of the group, is observed. The

payoff of a subject depends on a fixed pay, the cost of effort based on the subject’s

effort choice, and a bonus that depends on the minimum effort of the group. Two

different types of contracts are used in the experiment. Relative to the contract

with high incentive pay (i.e. Contract 2), the contract with low incentive pay (i.e.

Contract 1) assumes a higher fixed pay, but a lower bonus factor. In summary,

Contract 2 features higher incentives to coordinate at high effort levels than Contract

1.

CIQ implement the following four treatments. In the Random treatment, the

subjects are randomly assigned to groups and contracts. In the Auction treatment,

the subjects participate in a reverse English auction in which bids indicate willingness

to take lower fixed pay in exchange for increased performance pay. The auction

mimics, albeit imperfectly, the selection process in the market mechanism. In the

Sort treatment, the subjects’ characteristics and initial choices are used to predict

which incentive contract the subjects would have been assigned to had the selection

occurred via the market mechanism. Predicted contract assignments are exogenously

implemented to (imperfectly) reproduce the market’s outcome.2 The Reverse Sort

treatment, flips the contract assignments relative to the Sort treatment. Thus, low

performance pay is assigned to subjects who would probably be assigned to high

performance pay through the market mechanism (and vice versa). The interested

reader should refer to the paper for the details.

3 Structural Learning Model

We next present the model’s setup. We then indicate the explicit assumptions in

the beliefs and decision rules of (sophisticated and unsophisticated) subjects in each

treatment.

2Therefore, this treatment preserves the effect of selection as it inherits the market’s tendency
to assign optimists to high performance pay, but eliminates the effect of strategic anticipation by
depriving subjects of any information allowing them to anticipate the selection process.
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3.1 Setup

Let e ∈ {1, 2, 3, 4, 5} correspond to the effort level chosen by a subject. If a subject

chooses e = 1, then this maps to an effort level of 0; if a subject chooses e = 2, then

this maps to an effort level of 10, and so on and so forth. At the highest effort level,

a subject chooses e = 5, which maps to an effort level of 40. Let m ∈ {1, 2, 3, 4, 5}
correspond to the minimum effort level of the other 3 subjects in the group. Payoffs

of subject i are determined by a contract consisting of a base wage, an effort cost,

and a bonus rate. There are two contracts, henceforth denoted by superscript c. In

Contract 1, c = 1, base wage is W1 = 300 ECUs, and in Contract 2, c = 2, base wage

is W2 = w ECUs, which varies across different experimental sessions. The payoff of

subject with contract c, who chooses effort level e and faces other subjects’ minimum

effort level m, is

π̄1(e,m) = W1 − 5 · (e− 1)× 10 +B1 · (min{e,m} − 1)× 10,

π̄2(e,m|w) = w − 5 · (e− 1)× 10 +B2 · (min{e,m} − 1)× 10.

For the following exposition, we model the experiment for the duration of twenty

rounds, split into two blocks of 10 rounds each. Subjects’ payoffs differ by the contract

they are assigned in the beginning of a block. A subject retains the same contract

throughout the entire block. Without loss of generality, let πit(e,m) denote the payoff

function of subject i in round t. All subjects are assigned to Contract 1 in Block 1.

In addition, every subject is randomly assigned to a group of four subjects at the

beginning of Block 1. In the beginning of Block 2, subjects’ contracts and groups are

re-assigned. Half of the subjects are assigned to Contract 1, while the other half is

assigned to Contract 2. The re-assignment rules differ across treatments. We consider

four treatments: Random, Auction, Sort, and Reverse Sort.

The model consists of two types of subjects: the sophisticated subjects, and the

unsophisticated ones. We denote unsophisticated learners with superscript u, and

denote sophisticated learners with s. Unsophisticated learners are randomly assigned

to two subtypes that differ in their initial beliefs about others’ behavior. Optimists

initially believe that all other subjects will choose 40 (i.e. the highest possible effort

level). Pessimists initially believe that all other subjects will choose 0 (i.e. the

lowest possible effort level).3 Sophisticated learners are also randomly assigned to two

3Using a specification with two subtypes rather than a continuum makes fitting the model com-
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subtypes. One subtype has sophisticated learners with ‘strategic anticipation’ while

the other has sophisticated learners without. The two subtypes differ in how they

model belief formation during and after the auction in the respective treatment. The

model generates dropout times as noisy best responses to beliefs about effort levels

in Block 2 under each contract.4 The distinguishing feature of sophisticated types

with strategic anticipation is that they take into account how the auction changes the

expected proportion of optimists assigned to each contract. Unsophisticated types

and sophisticated types without strategic anticipation do not account for optimists

being more likely to be assigned to Contract 2 in Block 2. Sophisticated types with

strategic anticipation form beliefs by modeling the decision-making of unsophisticated

types, both optimists and pessimists, in the auction. As the value of base wage

changes, they update the expected composition of unsophisticated subtypes (optimists

vs. pessimists) under each contract. Sophisticated types with strategic anticipation

understand that pessimists tend to choose Contract 1 and optimists tend to choose

Contract 2. This makes them drop out later in the auction and choose higher (lower)

effort levels if they are assigned to Contract 2 (Contract 1).5

Next, we provide the detailed model specification of the two types of subjects.

For notational convenience, the contract c superscript is suppressed in the following

subsections.

3.1.1 Unsophisticated Subjects

An unsophisticated subject updates his/her beliefs based on the current-round expe-

rience. Let N−it(e) be the number of subjects other than subject i choosing effort

level e. Let Wit(e) be the subject’s previous-period experience; thus, the updating

rule is

Wit+1(e) = δ ·Wit(e) +N−it(e),

putationally feasible and eases interpretation of the results. Our qualitative results do not depend
on this simplifying assumption.

4Given that we are, in essence, using a Vickrey auction, beliefs about others’ strategies in the
auction do not play an important role.

5The learning model only includes sorting based on beliefs, as opposed to sorting based on other
personal characteristics. This is appropriate given that personal characteristics have little effect on
dropout times beyond their effect on the probability of choosing 40 in the first round. This indicates
that personal characteristics affect dropout times through their impact on initial beliefs.
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where δ is the depreciation parameter to be estimated from the data. This updating

rule is drawn from the standard stochastic fictitious play model. The initial period

weights for the optimists are [0, 0, 0, 0, ω], and the weights for the pessimists are

[ω, 0, 0, 0, 0]. In other words, optimists initially believe that all other subjects will

choose 40 and pessimists initially believe that all other subjects will choose 0. The

initial value of ω is a parameter to be estimated.

The proportion of unsophisticated subject types in the population are parame-

ters estimated from the data. The probability of being subtype l is µpes, and the

probability of being subtype h is µopt. An unsophisticated subject believes that the

probability of any other subject in the group choosing effort level e in the next round

t+ 1 is

puit+1(e) =
Wit+1(e)∑5
k=1Wit+1(k)

.

With the belief puit+1(e), an unsophisticated subject can infer the probability of min-

imum effort being m in round t+ 1 is quit+1(m), where

quit+1(m) =

(
5∑

k=m

puit+1(k)

)3

−

(
5∑

k=m+1

puit+1(k)

)3

, ∀m ∈ {1, 2, 3, 4} (1)

quit+1(5) = (puit+1(5))3.

Notice that in the initial period, optimists’ values are ph1(5) = 1 and qh1 (5) = 1.

Conversely, pessimists’ values are pl1(1) = 1 and ql1(1) = 1. Given belief quit(m), the

expected payoff of a subtype u player choosing effort e is

Eπuit(e) =
5∑

m=1

quit(m) · πit(e,m) for u = h, l and ∀e.

We assume that the probability of a type u subject choosing effort level e follows a

logit specification, where

Φu
it(e) =

exp(λ · Eπuit(e))∑5
k=1 exp(λ · Eπuit(k))

for u = h, l and ∀e. (2)

Each unsophisticated subject takes a random draw to determine his actual effort

choice based on this probability Φu
it in each round t.
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3.1.2 Sophisticated Subjects

A sophisticated subject is denoted with superscript s. Our modeling of the sophis-

ticated subjects and their learning process is similar to that of the sophisticated

EWA model of Camerer, Ho, and Chong (2002). Sophisticated subjects assume all

other subjects in the group are unsophisticated. A sophisticated subject knows how

unsophisticated subjects’ beliefs evolve and can therefore anticipate other subjects’

behaviors. However, a sophisticated subject cannot identify other subjects in the

group, therefore, cannot track individual players’ behaviors over time. We assume a

sophisticated subject i uses the average of other subjects’ N−jt(e) to formulate the

updating rules of the unsophisticated types. For example, if a sophisticated type

observes effort levels 5, 3, 2, 1 in the group, and knows his own effort choice, which

is 2, then he can infer that the subject choosing 5 would have N = [0, 0, 1, 1, 1], the

subject choosing 3 would have N = [1, 0, 0, 1, 1], and the subject choosing 1 would

have N = [1, 0, 1, 1, 0]. So the average is N̄ = [2/3, 0, 2/3, 1, 2/3]. The same updating

rule is used where

Wit+1(e) = δ ·Wit(e) + N̄−it(e).

An unsophisticated person’s effort choice probability Φus
it can be readily computed.

Notice that Φus
it is the same for all other subjects in the group. This probability is

different from the actual choice probability unsophisticated subjects used.

A sophisticated subject does not know the type of the other subjects. He believes

the probability of another subject being type l is θ̃i and the probability of another

subject being type h is 1 − θ̃i. The latter may or may not be consistent with the

distribution of unsophisticated subject types in the population, where the probability

of being subtype l is θ = µpes
µpes+µopt

and the probability of being subtype h is 1− θ.
In Block 1, beliefs about θ are correct, so θ̃i = θ ∀i ∈ {i : Sophisticated}. In

Block 2, beliefs may be incorrect if sophisticated subjects fail to anticipate the effect

of selection. The two subtypes of sophisticated subjects differ in their ability to

anticipate the effects of selection caused by the auction (i.e. strategic anticipation).

We denote the proportion of the subtype with the ability of strategic anticipation

in the population µsa. Therefore, the probability of the subtype without strategic

anticipation is 1− µpes − µopt − µsa.
On one hand, a sophisticated subject without strategic anticipation still assumes

θ̃i = θ after the auction has taken place. In other words, a sophisticated learner
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without strategic anticipation does not adjust his beliefs post-auction for the effect

of selection. On the other hand, a sophisticated subject with strategic anticipation

alters his post-auction beliefs θ̃i based on his second-block contract assignment in

the Auction treatment. No such adjustment takes place in the other treatments as

the subject has no reason to anticipate selection effect, so that θ̃i = θ in all other

treatments.

A sophisticated subject’s belief of the distribution of effort choices by another

subject j 6= i is

pst+1(e) = θ̃it+1Φu,h
it+1(e) + (1− θ̃it+1)Φu,l

it+1(e) ∀e.

With the belief psit+1(e), a sophisticated subject can infer the probability of minimum

effort being m in round t+1. We denote this probability as qsit+1(m), which is similarly

defined as in Equation (1). Therefore, the expected payoff of sophisticated subject i

choosing effort level e in the next round is

Eπsit(e) =
5∑

m=1

qsit(e)πit(e,m) ∀e.

We assume that the probability of a type s subject choosing effort level e follows a

logit specification, where

Φs
it(e) =

exp(λEπsit(e))∑5
k=1 exp(λEπsit(k))

∀e. (3)

The actual effort choice based on this probability Φs
it in each round t is randomly

drawn for each sophisticated subject.6

6Both Camerer, Ho, and Chong (2002) and Brandts, Cooper, Fatas, and Qi (2015a) allow for the
possibility that some sophisticated types are forward looking. In other words, some sophisticated
types can anticipate that their current actions will affect others’ future choices and engage in strategic
teaching to manipulate future outcomes. We have developed and fit a version of our model that
includes forward looking types, but cannot reject the null hypothesis that the fraction of such types
is zero. We have therefore dropped this feature from this model. None of our conclusions would be
affected if forward looking types were included in the model.
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3.1.3 Reset

At the beginning of Block 2 (or round 11), reassignment of groups and contracts

occurs. We assume that the experience weights of subjects are reset at this point.

The reset experience weight W̃i,11, is a weighted average of realized experience at the

end of Block 1, Wi,11, and a subject’s initial beliefs weight Wi,0; that is,

W̃i,11 = ρ ·Wi,0 + (1− ρ) ·Wi,11,

where the reset parameter ρ is fit from the data.

3.2 Treatments

We consider the four treatments in CIQ, which differ in the rules of assigning subjects

into contracts and of forming new groups within each contract in the second block.

3.2.1 Random

Each individual subject draws a random shock εi from a common distribution. We

rank εi’s from high to low. Then, half of the subjects who have εi’s above the median

shock value are assigned to Contract 1 in Block 2. The other half of the subjects

who have εi’s below the median shock value are assigned to Contract 2 in Block

2. Subjects are then randomly assigned into groups. Sophisticated subjects do not

change their beliefs of the composition of the unsophisticated subtypes, so θ̃i = θ,

∀i ∈ {i : Sophisticated}.

3.2.2 Auction

In the Auction Treatment, Contract 2 base wage ranges from 400 to 0. Every 5

seconds, the base wage drops by 5 ECUs. In every instant in time, a subject needs

to decide whether to press a ‘Contract 1’ button to drop out of the Auction process.

An unsophisticated subject, given reset experience weight W̃i,11, can formulate

beliefs about the distribution of minimum effort in a future group qui,11, and the

expectation on payoffs in round 11 under Contract 1 and under Contract 2 with any
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base wage; that is,

Eπ̄u,c=1
i,11 (e) =

5∑
m=1

qui,11(m) · π̄c=1(e,m),

Eπ̄u,c=2
i,11 (e|w) =

5∑
m=1

qui,11(m) · π̄c=2(e,m|w).

Using the expected payoffs, we can calculate the effort choice probability Φu,c=1
it (e) and

Φu,c=2
it (e|w) for every possible contract. Therefore, the expected payoff of choosing

Contract 1 is always Eπ̄u,c=1
i =

∑
e Φu,c=1

it (e) · Eπ̄u,c=1
i,11 (e), and expected payoff of

having Contract 2 with base wage w is Eπ̄u,c=2
i (w) =

∑
e Φu,c=2

it (e|w) · Eπ̄u,c=2
i,11 (e|w).

Assume subjects make noisy dropout decisions based on a logit decision rule, where

the logit parameter is ζ. At any given w, the probability of subject i choosing Contract

1 for any given wage wi is

d(wi) =
exp(ζ · Eπ̄u,c=1

i )

exp(ζ · Eπ̄u,c=1
i ) + exp(ζ · Eπ̄u,c=2

i (w))
.

The above probability, d(w), represents the likelihood of an unsophisticated subject

dropping out at base wage w, conditional on the subject not having chosen to drop

out at any base wage w′ > w. We can iteratively define the unconditional probability

of the subject dropping out at the base wage w, pudropout(w), as follows:

pudropout(w = 400) = d(w = 400); Du(w = 400) = pudropout(w = 400);

pudropout(w) = (1−Du(w + 5)) · d(w); Du(w) = Du(w + 5) + pudropout(w),∀w ∈ {395, 390, ..., 5, 0},

where Du(w) is the probability of the subject dropping out before or at base wage w.

Compared to an unsophisticated subject, a sophisticated subject has the follow-

ing information when making contract decisions. First, if 2n subjects participate

in an auction, a sophisticated subject considers the other 2n − 1 subjects’ contract

choices. Second, a sophisticated subject does not know the type of other subjects,

and assumes everyone else is unsophisticated. Furthermore, the subject knows the

population distribution of subtypes, and there is a θ chance that the other sub-

ject is an unsophisticated pessimist. Third, a sophisticated subject forms beliefs on

unsophisticated subjects’ experience weight W̃ u
11(m). The subject assumes that all
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unsophisticated subjects of the same subtype have the same beliefs. So using the

same updating rules, the sophisticated subject can predict Du(w|q̃u11) for each sub-

type of subject for any given base wage w, where Du is the probability that a subtype

u subject will choose to drop out of the auction at or before wage w.

A sophisticated type without strategic anticipation believes that the probability

of having an unsophisticated pessimist within his own contract in Block 2 is still θ,

which is the same as in the population. With the auction taking place, a sophisticated

type with strategic anticipation has the ability to anticipate that optimists are more

likely to be assigned to Contract 2, and pessimists are more likely to be assigned to

Contract 1, so that the relative proportions of pessimists to optimists are different

across contracts. Therefore, the probability of meeting a pessimist θ̃ can vary by

individual subject’s past experience in Block 1 and depends on which contract a

sophisticated subject is ultimately assigned to. We model strategic anticipation and

how beliefs of θ̃ are formed as follows.

Without loss of generality, assume there are nh type h subjects and nl type l

subjects, where nl = (2n − 1) − nh. From a sophisticated subject’s perspective, the

probability of facing nh type h subjects and nl type l subjects is
(

2n−1
nl

)
(θ)nl(1− θ)nh .

Given any nl and n, the probability of exactly n̄ ∈ (0, 2n − 1] individuals dropping

out at w is

Prob(n̄|nl, n)

=
∑
x

(
nl
x

)
(Dl(w))x(1−Dl(w))nl−x ·

(
2n− 1− nl
n̄− x

)
(Dh(w))n̄−x(1−Dh(w))(2n−1−nl)−(n̄−x),

when x ∈ [0, nl] if nl < n̄, and x ∈ [n̄− nh, n̄] if nl ≥ n̄.

Based on Bayes’ rule, given any nl, the probability that exactly n̄ ∈ (0, 2n − 1]

individuals, and exactly x ∈ [0,min{nl, n̄}] of type l, have dropped out at or before

any base wage w is

P dropout(x,w, n̄|nl)

=

(
nl

x

)
(Dl(w))x(1−Dl(w))nl−x ·

(
2n−1−nl

n̄−x

)
(Dh(w))n̄−x(1−Dh(w))(2n−1−nl)−(n̄−x)∑min{nl,n̄}

k=0

(
nl

k

)
(Dl(w))k(1−Dl(w))nl−k ·

(
2n−1−nl

n̄−k

)
(Dh(w))n̄−k(1−Dh(w))(2n−1−nl)−(n̄−k)

.

Knowing the probability of other subjects’ dropout wages w, a sophisticated learner

decides upon his own dropout wage w′. In particular, a sophisticated subject under-
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stands that for any w to become the base wage of Contract 2 in the second block,

two possibilities exist:

Case 1: exactly n unsophisticated subjects dropped out at or before w, and the

sophisticated subject chose a dropout wage w′ < w; or

Case 2: exactly n − 1 unsophisticated subjects dropped out at or before w, and

the sophisticated subject chose a dropout wage w′ ≥ w.

In case 1, the sophisticated individual gets Contract 2. If exactly number x of type

l individuals are in Contract 1, the sophisticated subject knows that exactly nl − x
individuals with Contract 2 are of subtype l, and exactly n−1−(nl−x) are of subtype

h. So the sophisticated subject with strategic anticipation expects the probability of

facing a subtype l in the Block 2 group to be θ̃ = nl−x
n−1

. A sophisticated subject’s ex-

pected payoff conditional on getting Contract 2 is EΠ̄s,c=2
i,11 (w, x, nl). Similarly, in case

2, the sophisticated individual gets Contract 1. If exactly number x individuals with

Contract 1 are of subtype l, then exactly n−1−x of them are subtype h subjects. So

the sophisticated subject with strategic anticipation expects the probability of facing

a subtype l subject in the Block 2 group to be θ̃ = x
n−1

. A sophisticated subject’s

expected payoff conditional on getting Contract 1 is EΠ̄s,c=1
i,11 (x, nl). Therefore, taking

into account the probability of getting exactly x individuals of subtype l in either

contract, the expected payoff of a sophisticated individual with strategic anticipation

is:

Case 1:

(
2n− 1

nl

)
(θ)nl(1− θ)2n−1−nlP dropout(x,w, n|nl)EΠ̄s,c=2

i,11 (w, x, nl),

Case 2:

(
2n− 1

nl

)
(θ)nl(1− θ)2n−1−nlP dropout(x,w, n− 1|nl)EΠ̄s,c=1

i,11 (x, nl).

Sophisticated subjects of both subtypes can make a mistake in choosing contracts.

The potential for mistakes is represented by an additional randomly drawn logit

error term εc, which is i.i.d. across different contracts. Similar to unsophisticated

subjects, we can derive the dropout wage wi and the probability of dropping out for

sophisticated types.7

For all subjects, we simulate their choices of dropout wages wi’s. We then rank

dropout wage wi’s from high to low. Then, the half of the subjects who have wi’s

7There is no closed-form probability of base wage choices for the sophisticated individuals. To
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above the median dropout wage are assigned to Contract 1 in Block 2. The other

half of the subjects who have wi’s below the median dropout wage are assigned to

Contract 2 in Block 2. The group assignment of subjects within a contract is random

as in the actual experimental setting.

3.2.3 Sort and Reverse Sort

We use the same contract assignments from the simulation of the Auction treatment

in the Sort treatment. Sophisticated subjects do not change their beliefs of the

composition of the unsophisticated subtypes, so θ̃i = θ, ∀i ∈ {i : Sophisticated}.
However, two additional steps are added to simulate the group assignment of subjects.

First, the model allows for the possibility that the Sort and Reverse Sort treat-

ments imperfectly replicate the selection mechanism from the Auction treatment by

adding an additional noise term to the dropout time used to assign a subject to a

group and contract in the respective treatments. The sorting of subjects is based

upon wi + εi, where ε ∼ N(0, ς) is the sorting error. The standard deviation ς is

a parameter estimated from the data. The standard deviation of this noise term

determines how well the Sort and Reverse Sort treatments replicate the selection

mechanism from the Auction treatment. A standard deviation of zero implies perfect

replication. As the standard deviation of the noise term increases, more errors are

made in terms of assigning individuals to the wrong contract. Then, the half of the

subjects who have wi + εi’s above the median dropout wage are assigned to Contract

1 in Block 2. The other half of the subjects who have wi + εi’s below the median

dropout wage are assigned to Contract 2 in Block 2.

In addition, subjects are sorted within a contract when assigned to groups as they

were in the actual experimental setting. This means, for example, the four subjects

with the four lowest predicted dropout wages wi + εi are sorted into the same group

simplify computation, we approximate θ̃s,ci by

θ̃s,c=1
i (w) =

2n−1∑
nl=0

min{nl,n}∑
x=0

(
2n− 1

nl

)
(θ)nl(1− θ)2n−1−nlP dropout(x,w, n− 1|nl)

x

n− 1
,

θ̃s,c=2
i (w) =

2n−1∑
nl=0

min{nl,n}∑
x=0

(
2n− 1

nl

)
(θ)nl(1− θ)2n−1−nlP dropout(x,w, n|nl)

nl − x
n− 1

.

Monte Carlo tests indicate that simulated subjects’ behaviors do not change too much under such
an approximation.
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in Contract 2, while the four subjects with the four highest predicted dropout wages

are sorted into the same group in Contract 1.

As for the Reverse Sort treatment, we rank the predicted dropout wage wi + εi’s

from low to high. Then, the half of the subjects who have wi + εi’s below the median

dropout wage are assigned to Contract 1 in Block 2. The other half of the subjects

who have wi + εi’s above the median dropout wage are assigned to Contract 2 in

Block 2. We also sort subjects into groups based on their dropout wages. Subjects

are also sorted within a contract when assigned to groups. Sorting errors in the Sort

and the Reverse Sort treatments are assumed to have the same standard deviation ς.

4 Estimation Procedure

Due to the structural complexity and non-linearity of the learning model, there is

no closed-form solution to the estimator. We therefore rely upon a moment-based

simulation method (Method of Simulated Moments) to estimate the model. This is a

mixture model, so we do not estimate the type or subtype of any specific individual,

but estimate instead the distribution of types and subtypes within the population.

To ensure a reasonable efficiency of our estimator, we generate 100 simulated datasets

for each session of each treatment. In each of the 100 simulations, for each simulated

subject, we redraw the noise term of effort choice in each round, the noise term

of auction (in the Auction treatment only), and the type of the individual (while

maintaining the same proportions in the population).

The moments are the average efforts of each round in Block 1 (10 moments), the

average efforts of each round in Block 2 by contract and by treatment (10 rounds

× 2 contracts × 4 treatments). So we have a total of 90 moments. Let the set of

moments be denoted by Γ. For any particular set of parameters Θ, we take a set of

the aforementioned random draws for each subject and simulate subjects’ behavior

in an experimental session. For each session, we simulate the model J = 100 times

using different sets of random draws. Each subject receives a random draw in the

beginning of time to determine his/her own type and subtype (whether he/she is

a sophisticated subject with/without strategic anticipation, a subtype l subject or

a subtype h subject). The type and subtype of a subject are fixed for the entire

simulated experimental session. The unconditional probabilities of subject types are
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estimated parameters. In particular, the fraction of pessimistic unsophisticated types

is µpes, the fraction of optimistic unsophisticated types is µopt, and the fraction of

sophisticated types with strategic anticipation is µsa. The fraction of sophisticated

types without strategic anticipation is 1 − µpes − µopt − µsa. The set of noise terms

and type draws are fixed for all iterations of the estimation routine. To be consistent,

we also use the same noise/type draws for all of the estimation and counter-factual

exercises in the paper.

For each j ∈ {1, 2, ..., J}, we determine the simulated moments Γ̂m(Θ). Then, the

optimal estimator is defined as Θ∗ = arg minΘ

[
Γ− 1

J

∑J
m=1 Γ̂j

]′
W
[
Γ− 1

J

∑J
j=1 Γ̂j

]
,

where W is the optimal weighting matrix. Standard errors are obtained by boot-

strapping. The estimation procedure takes into account that subjects’ behaviors are

potentially correlated across periods at the individual level. In other words, draws

of the error term (see Equation 2 and 3) are independently distributed across differ-

ent simulated subjects, but can be correlated for the same individual across different

rounds. The estimated parameter values from fitting the full model to the data are

presented in Table 1.

4.1 Alternative Model Specifications

The full model contains four different types of players, yielding a relatively complex

model. It is reasonable to ask whether this complexity serves any useful purpose,

either in terms of improving our ability to fit the data or, more importantly, our

ability to track major features of the data and to predict out of sample. We fit four

models, the full model and three models that simplify the full model by reducing the

number of types. Ordered from least to most complex, the four models are as follows.

Model 1: Rather than having optimists and pessimists, all unsophisticated learn-

ers initially believe that all other subjects will choose effort 40 with probability θm

and effort 0 with probability 1 − θm, where the parameter θm is estimated from the

data. There are no sophisticated learners (µpes + µopt = 1). Model 1 has no ex ante

heterogeneity and no sophisticated learners.

Model 2: There are two subtypes of unsophisticated learners, optimists and pes-

simists, modeled as in the full model. There are no sophisticated learners (µpes+µopt =

1). Model 2 allows for ex ante heterogeneity in beliefs but contains no sophisticated
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Table 1: Estimated Learning Model Parameters

Parameter Brief Description Estimated Values

µpes Fraction of pessimistic unsophisticated types 0.185∗∗∗

(0.027)

µopt Fraction of optimistic unsophisticated types 0.706∗∗∗

(0.034)

µsa Fraction of sophisticated types with strategic anticipation 0.031∗∗∗

(0.003)

ω Initial experience weight 86.135∗∗∗

(29.176)

δ Experience weight depreciation factor 0.859∗∗∗

(0.029)

λ Effort choice logit parameter 0.458∗∗∗

(0.025)

ρ Reset of belief in round 11 0.998∗∗∗

(0.025)

ζ Auction dropout choice logit parameter 0.173∗∗∗

(0.065)

ς Sort error standard deviation 85.900∗

(44.670)

SSE 1,202.20

Notes: The standard errors are provided in the parentheses. SSE is an acronym for the sum of

squared errors. *** and * indicate statistical significance at the 1%, and 10%, respectively. The

estimated proportion of sophisticated types without strategic anticipation in the population is 1 −
µpes − µopt − µsa.

learners.

Model 3: This model adds a different type of heterogeneity than in Model 2.

Similar to Model 1, all unsophisticated learners initially believe that all other subjects

will choose effort level 40 with probability θm and effort level 0 with probability 1−θm,

where the parameter θm is estimated from the data. Model 3 includes sophisticated

learners. Since there is only one type of unsophisticated learner, there can be no

selection of different types of unsophisticated learners into contracts. It follows that

Model 3 does not include sophisticated learners with strategic anticipation as there is

nothing for them to anticipate. We estimate the fraction of unsophisticated learners
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µunsoph while the fraction of sophisticated learners is 1 − µunsoph. Model 3 does not

allow for ex ante heterogeneity in the beliefs of unsophisticated learners, but does

allow for heterogeneity between unsophisticated and sophisticated learners.

Model 4: This is the full model presented in the manuscript. Model 4 allows

for ex ante heterogeneity in the beliefs of unsophisticated learners and heterogeneity

between unsophisticated and sophisticated learners.

Table 2: Estimated Parameters of Alternative Models

Parameter Model 1 Model 2 Model 3 Model 4

µpes 0.185∗∗∗

(0.027)

µopt 0.715∗∗∗ 0.706∗∗∗

(0.041) (0.034)

µsa 0.031∗∗∗

(0.003)

µunsoph 0.654∗∗∗

(0.075)

ω 43.787∗∗∗ 131.556∗∗ 79.6547∗∗ 86.135∗∗∗

(17.892) (64.128) (36.900) (29.176)

δ 0.990∗∗∗ 0.870∗∗∗ 0.990∗∗∗ 0.859∗∗∗

(0.026) (0.032) (0.036) (0.029)

λ 0.020∗∗∗ 0.400∗∗∗ 0.021∗∗∗ 0.458∗∗∗

(0.002) (0.073) (0.004) (0.025)

ρ 0.938∗∗∗ 0.999∗∗∗ 0.999∗∗∗ 0.998∗∗∗

(0.026) (0.027) (0.024) (0.025)

ζ 2.189 0.169∗∗∗ 0.585∗∗∗ 0.173∗∗∗

(2.827) (0.075) (0.185) (0.065)

ς 0.060 59.987 0.163∗ 85.900∗

(0.084) (43.701) (0.090) (44.670)

θm 0.998∗∗∗ 0.999∗∗∗

(0.025) (0.028)

SSE 6,041.98 1,934.62 3,600.39 1202.20

Notes: The standard errors are provided in the parentheses. SSE is an acronym for the sum of

squared errors. ***, ** and * indicate statistical significance at the 1%, 5% and 10%, respectively.
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We fit all four models to the full dataset; the parameter estimates are presented

in Table 2.8 After fitting the model, we generate 100 simulated datasets for each of

the fitted models. Table 3 compares the average effort in Block 2, broken down by

treatment and contract, for the experimental data and the simulated data.

Table 3: Average Effort Across Alternative Models

Random Auction Sort Reverse Sort

Contr. 1 Contr.2 Contr.1 Contr.2 Contr.1 Contr.2 Contr.1 Contr.2

Data 21.17 31.34 9.64 39.81 13.45 37.48 30.03 16.06

Model 1 17.63 31.42 17.58 31.48 17.64 31.41 17.68 31.40

Model 2 19.02 28.13 8.17 39.90 8.51 39.30 38.18 16.36

Model 3 15.21 29.03 11.17 33.15 11.15 33.18 19.84 25.06

Model 4 16.75 28.62 7.23 39.95 8.53 37.32 31.43 19.67

Notes: The Table displays a comparison of average efforts in the second block by contracts and by

treatments across alternative models. The actual averages are provided in the first row.

Fitting a model to the data does not guarantee either the ability to track existing

data or to make predictions. The former point can easily be seen by comparing the

experimental data and simulated data for Model 1 in Table 3. At no point are the

simulated data from Model 1 particularly close to the experimental data. The failure

to track the data is especially vivid in the Reverse Sort treatment, where even the

flipped relationship between the two contracts is incorrect in the simulated data. It

is not surprising that Model 1 does poorly at tracking the data, as it contains no

mechanism for capturing either the selection effect or the effect of strategic anticipa-

tion. Models 2 and 3 do better than Model 1 at tracking the data, but still have some

failures (notably in the Reverse Sort treatment).

Table 4 explores the ability of the various models (the full model and the three

simplified models) to replicate one of the most important features of the experimental

8The inclusion of both subtypes of sophisticated learners improves the fit of the full model.
On one hand, compared to the full model, if the model only allows for sophisticated learners with
strategic anticipation, the sum of squared errors increases from 1202.2 to 1483.8. On the other hand,
if the model only allows for sophisticated learners without strategic anticipation, the sum of squared
errors increases from 1202.2 to 1432.7. The estimated fraction of sophisticated learners with strategic
anticipation is small (i.e. only 3.1%). Both strategic anticipation and sorting errors (captured by
ς) contribute to differences in average effort between the simulated Auction and Sort treatments. If
the model is fitted to the data without sorting error (ς = 0), the fraction of sophisticated learners
with strategic anticipation increases to 9.8%.
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data. CIQ calculate that 73% of the effect of endogenous assignment to high perfor-

mance pay can be attributed to selection. One of our main uses of the learning model

is to explore how this figure would change if the Sort treatment perfectly replicated

the selection mechanism from the Auction treatment. This exercise has little value if

the model does a poor job of approximating the 73% figure with imperfect replication.

The first column of Table 4 reports, for the experimental data and simulated data

for each of the four models, the percentage of the effect of endogenous assignment to

high performance pay that can be attributed to selection.9 The final column of Table

4 examines one of the most striking features of our data; that is, the reversal in aver-

age effort between the two contracts in the Reverse Sort treatment. Specifically, for

the experimental data and the simulated data, the last column reports the difference

in average effort in Block 2 between Contract 2 and Contract 1 in the Reverse Sort

treatment.

Table 4: Comparison of Selection Across Alternative Models

% Due to Selection Reverse Sort

Contract 2 Contract 2 - Contract 1

Data 73% −13.97

Model 1 −20% 13.72

Model 2 95% −21.83

Model 3 101% 5.22

Model 4 77% −11.76

Notes: The first column provides the effect of endogenous assignment to high performance pay that

can be attributed to selection across the alternative models. The last column reports the difference in

average effort in the second block between Contract 2 and Contract 1 in the Reverse Sort treatment.

The full model (Model 4) does well along both dimensions, but it is the most

complex of the four models. Is that complexity necessary to track major features of the

experimental data, or is it sufficient to only incorporate heterogeneous initial beliefs

(but no sophisticated learners) as in Model 2, or to only add sophisticated learners

(but no heterogeneity of initial beliefs for unsophisticated learners) as in Model 3?

9This is the difference between average effort in Block 2 in the Sort and Random Assignment
treatments divided by the difference between average effort in Block 2 in the Auction and Random
Assignment treatments.
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Table 4 indicates that the complexity of the full model is necessary. Because Model 2

has no mechanism for incorporating strategic anticipation, it overestimates the effect

of selection (95% in the simulated data vs. 73% in the data) and, as a side effect,

overestimates the difference between Contracts 1 and 2 in the Reverse Sort treatment

(-21.83 in the simulated data vs. -13.97 in the data). While we don’t expect any model

to be perfect, these shortcomings are far larger than those for Model 4. Model 3 is even

worse, missing the flipped relationship between Contracts 1 and 2 in the Reverse Sort

treatment. Model 3 also allows for selection, but similar to Model 2 cannot capture the

effects of strategic anticipation. Strategic anticipation relies on sophisticated learners

recognizing that the auction will sort different types of unsophisticated learners into

different contracts. When there is no heterogeneity of unsophisticated learners, this

mechanism breaks down. The added complexity of Model 4 improves the model’s

ability to fit the data in the standard sense, meaning that the added parameters are

statistically significant (see Table 1) but, more importantly, the added features are

necessary to capture the most interesting features of our experimental data.

4.2 Out-of-Sample Prediction

As shown in the previous subsection, subjects’ heterogeneity adds complexity to the

model but improves the fit and is necessary for the fitted model to track important

features of the experimental data. Fitting a model to the data does not guarantee that

the fitted model will do a good job of tracking existing data. The differences between

treatments are not part of the objective function per se, and fitting one treatment

well may come at the expense of fitting another poorly or missing qualitative or

quantitative differences between treatments.10

To validate our model’s ability to predict out-of-sample, we estimate the model

using data from the Random, Auction and Reverse Sort treatments, and simulate the

model using the resulting parameters to predict outcomes in the Sort Treatment. In

CIQ, the Sort treatment is designed to separate the effect of selection from the effect

10To see this point, consider an incredibly simple-minded model of individual decision-making in
our experiments; thus, in all rounds of all treatments under all contracts, subjects pick effort level
i ∈ {0, 10, 20, 30, 40} with probability pi. There is nothing that prevents us fitting this simple-minded
model to our data, but it is obvious that, even using fitted values for p0, p10, etc., it would fail to
track the dynamics in the data as well as the differences between the various treatments. It would
also fail to predict data from new treatments.

23



of strategic anticipation. Therefore, we use the model’s ability to predict the Sort

treatment to validate its ability to make out-of-sample predictions.

A comparison of the estimated parameters for the model fitted from the full

dataset and the model fitted from three of the four treatments is presented in Table

5. The parameters change very little. As a result, the differences in goodness of fit,

as represented by the sum of squared errors, are negligible. This means, even when

the model is fitted to the data of only three treatments, its predictions of the fourth

(Sort) treatment are almost as good as the fully fitted version. In Block 2 of the Sort

treatment under Contract 2, the predicted average effort of 37.32 based on fitting

the model to only three treatments is almost identical to the average effort of 37.30

when fitting all four treatments, and the experimental data of 37.48. As a point of

comparison, if we fit Models 1, 2, or 3 to the data from the Random, Auction and

Reverse Sort treatments and simulate data for the Sort treatment, simulated average

effort in Block 2 for the Sort treatment differs substantially for all three models from

the observed data (30.33, 39.30, and 33.48 for Models 1, 2, and 3, respectively).

Based on the same out-of-sample prediction simulations, Table 6 expands on the

preceding points. We carry out a similar exercise to what was reported in the first

column in Table 4. The full model does well at predicting average effort in the Sort

treatment, and hence does a good job of predicting the percentage of the effect of

endogenous assignment to high performance pay that can be attributed to selection.

The other models once again do poorly.

One point to note here is that the full model might not be the best possible model

of learning from the vast universe of possible models either in terms of tracking

the major features of our experimental data or predicting out-of-sample within the

framework of our experiment. Identifying the best model is well beyond the scope

of this paper. Rather, our goal is to show that our model does a reasonably good

job of tracking major features of the experimental data as well as predicting out-of-

sample while a simplified version of our model would do far worse. This gives us some

confidence in the results of the counterfactual exercises based on the full model that

come next.
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Table 5: Out-of-Sample Predictions of Estimated Learning Parameters

Parameter Brief Description Fit 3, Predict Sort Fit 4

µpes Fraction of pessimistic unsophisticated types 0.186∗∗∗ 0.185∗∗∗

(0.019) (0.027)

µopt Fraction of optimistic unsophisticated types 0.708∗∗∗ 0.706∗∗∗

(0.016) (0.034)

µsa Fraction of sophisticated types with strategic anticipation 0.030∗∗∗ 0.031∗∗∗

(0.003) (0.003)

ω Initial experience weight 84.253∗∗∗ 86.135∗∗∗

(25.669) (29.176)

δ Experience weight depreciation factor 0.863∗∗∗ 0.859∗∗∗

(0.031) (0.029)

λ Effort choice logit parameter 0.457∗∗∗ 0.458∗∗∗

(0.040) (0.025)

ρ Reset of belief in round 11 0.990∗∗∗ 0.998∗∗∗

(0.014) (0.025)

ζ Auction dropout choice logit parameter 0.172∗∗∗ 0.173∗∗∗

(0.067) (0.065)

ς Sort error standard deviation 86.033∗∗ 85.900∗

(35.094) (44.670)

SSE 1,206.27 1,202.20

Notes: In the Fit 3, Predict Sort column, we estimate the model using data from the Random,

Auction and Reverse Sort treatments, and simulate the model using the resulting parameters to

predict outcomes in the Sort treatment. The Fit 4 column, is reproduced from Table 1 for comparison

purposes. The standard errors are provided in the parentheses. SSE is an acronym for the sum of

squared errors. ***, ** and * indicate statistical significance at the 1%, 5% and 10%, respectively.

The estimated proportion of sophisticated types without strategic anticipation in the population is

1− µpes − µopt − µsa.

5 Counterfactual Simulations

In the following Subsection, we highlight the usefulness of structural models to evalu-

ate the robustness of the earlier results. In the subsequent Subsection, we depict the

vastness of structural models in investigating the broader implications of the results.
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Table 6: Comparison of Selection Across Alternative Models When
Fit 3 to Predict Sort

% Due to Selection Reverse Sort

Contract 2 Contract 2 - Contract 1

Data 73% −13.97

Model 1 96% 12.19

Model 2 95% −22.51

Model 3 101% 5.17

Model 4 77% −11.92

Notes: The first column provides the effect of endogenous assignment to high performance pay that

can be attributed to selection across the alternative models. The last column reports the difference in

average effort in the second block between Contract 2 and Contract 1 in the Reverse Sort treatment.

In both columns, we estimate the model using data from the Random, Auction and Reverse Sort

treatments, and simulate the model using the resulting parameters to predict outcomes in the Sort

treatment.

5.1 Evaluating Robustness

We consider next an important caveat to the main results in CIQ. The study finds

that around 73% of the effect of making high performance pay endogenous is due to

selection. But we know that this understates the effect of selection because the Sort

treatment replicates imperfectly the selection mechanism from the Auction treatment.

To estimate the true effect of selection, we compare the results from two simulation

exercises. The first simulates the full model including the noise term for predicted

dropout times. We use the estimated parameters (Fit 4) of the full model (Model

4). The second set of simulations is identical to the first except we do not include an

error term for the predicted dropout times in the Sort and Reverse Sort treatments.

In other words, we set the standard deviation parameter ς = 0. This allows us to

estimate what would happen in the counterfactual case where we perfectly replicated

the selection mechanism from the Auction treatment.

The results of the two simulation exercises are shown in Figure 1 with the Sort

treatment on the left and the Reverse Sort on the right. Based on the experimental

data, CIQ calculated that 73% of the effect of making high performance pay endoge-

nous is due to selection. Doing the same calculation using simulated data from the full
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Figure 1: Simulations with Tobit Error
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Notes: The Figure displays the two simulation exercises. The first exercise simulates the full model

including the noise term for predicted dropout times, where the estimated parameters of the full

model are used. The second exercise is identical to the first except we do not include an error term

for the predicted dropout times in the Sort and Reverse Sort treatments.

model, which includes errors in assigning subjects to contracts for the Sort treatment,

yields a figure of 77%. There is little difference between the selection effect calculated

using the experimental and simulated data. For the simulations without errors in the

assignment of subjects to contracts, we find that, in the Sort treatment, 93% of the

effect of making high performance pay endogenous is due to selection. The difference

between the two sets of simulations is of more interest than the levels. If the effect

due to selection is underestimated by about the same amount in the experimental

data and the simulated data with errors, the true effect of selection is roughly 90%

of the effect of making high performance pay endogenous.
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5.2 Broader Implications

The first counterfactual exercise considers an additional dimension of heterogeneity:

ability. Heterogeneous ability is introduced into the model through differing effort

costs. Using simulations, we investigate how multidimensional selection affects the

efficiency properties of endogenous selection into incentive contracts.

In the Baseline simulations, all subjects had the same effort cost of 5 ECUs per

unit of effort expended as in the original experimental design. As a counterfactual, we

allow effort costs to vary within the subject population. In particular, half the pop-

ulation has an effort cost of 3, and the other half has an effort cost of 7 (henceforth,

referred to as ‘Three-Seven’ simulations). We subdivide the Three-Seven simulations

into two variants. The first (Three-Seven/Hetero) uses the same distribution of types

(pessimists, optimists) as the Baseline simulations. Three-Seven/Hetero differentiates

simulated subjects along two dimensions: initial beliefs and ability, thus allowing for

multidimensional sorting. The second variant, Three-Seven/Homo, imposes homoge-

neous beliefs. Specifically, simulated subjects in Three-Seven/Homo initially believe

that the other three members of their group will all choose 40 with probability 0.805

and will otherwise all choose 0. This value of ‘optimism’ was chosen to equalize the

initial effort levels for the Three-Seven/Hetero and Three-Seven/Homo simulations.

In both settings, the average effort cost is five. However, half of the simulated

subjects in the Three-Seven simulations face an effort cost higher than the Contract

1 bonus rate of 6. Hence, simulated subjects with an effort cost of 7 should only

cooperate if they are assigned to Contract 2 with a bonus rate of 10. As a result,

the Three-Seven simulations have lower average efforts in either Block 1 or, under

Contract 1, in Block 2 of the Random and the Auction treatments than in the Base-

line simulations.11 The three sets of simulations have comparable average effort levels

under Contract 2 for Block 2. In the Random Treatment, the Baseline has an av-

erage effort of 28.6 under Contract 2, compared to 27.8 in the Three-Seven/Hetero

simulations; both of these values are substantially higher than the average of 15.72

in the Three-Seven/Homo simulations. In the Auction Treatment, almost all groups

coordinate efficiently under Contract 2 for all three sets of simulations – the average

11The average effort in Block 1 is 16.9 in the Baseline as compared to 10.1 in Three-Seven/Hetero
and 2.21 in Three-Seven/Homo. In Block 2 under Contract 1, in the Baseline simulations, average
efforts are 16.8 and 7.2 in the Random and Auction treatments, respectively. The parallel values
are 11.4 and 0.8 in Three-Seven/Hetero, and 3.23 and 0.00 in Three-Seven/Homo.
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effort is essentially 40 in all three cases.

Figure 2: Simulations of Selection with Asymmetric Costs and Beliefs
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In the Baseline simulations, efficient coordination is sufficient to maximize surplus.

This is not true with asymmetric costs. If Contract 2 yields efficient coordination

while Contract 1 leads to coordination at very low effort levels, surplus is maximized

by assigning low-cost types to Contract 2. This raises an interesting question: how

does selection into Contract 2 work for Three-Seven/Hetero where multidimensional

sorting is possible? It is obvious that all low-cost optimists would be endogenously

assigned to Contract 2, and all high-cost pessimists would be assigned to Contract

1. What is less obvious is where the high-cost optimists and low-cost pessimists will

be assigned. The key insight comes from Figure 2, which shows the distribution of

subjects assigned to Contract 2 by their beliefs and effort costs in both the Random

and Auction treatments of the Three-Seven/Hetero experiment. Note that a different

cluster of bars is shown for each cost level in each treatment. For example, in the
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Auction treatment, 70% of the subjects assigned to Contract 2 are low-cost optimists

and 27% are high-cost optimists.

Figure 2 shows that virtually everyone assigned to Contract 2 in the Auction

treatment will be an optimist. To the extent that there are not enough low-cost

optimists to fill all the openings in Contract 2, the remaining slots are taken by

high-cost optimists. Virtually all of the low-cost pessimists are assigned to Contract

1. Underlying this, even high-cost optimists find Contract 2 more attractive than

Contract 1 because they anticipate a large bonus. Pessimists never think Contract 2

is attractive because they anticipate no bonuses. Low-cost pessimists would earn more

under Contract 2 if efficient coordination occurred, but they view this as extremely

unlikely. If effort levels are expected to be close to zero in equilibrium, it no longer

matters what effort costs are.

From an efficiency point of view, effort costs only affect overall surplus when sub-

jects actually exert efforts. It is surplus maximizing to have both low-cost optimists

and low-cost pessimists assigned to Contract 2. This is what happens in Three-

Seven/Homo; all simulated subjects have the same beliefs, hence sorting can only

take place on the basis of effort costs. Not surprisingly, the Auction Treatment al-

most entirely assigns the low-cost types to Contract 2. The effort levels are basically

identical to those in Three-Seven/Hetero (0 for Contract 1 and 40 for Contract 2), but

the average effort cost is 36% higher in the heterogenous beliefs’ case. Therefore, the

overall efficiency is lower in the heterogeneous beliefs’ case. When selection is possible

along multiple dimensions, selection may not take place along the dimension that is

most important for efficiency. Having either optimists or low-cost types assigned to

Contract 2 (where efficient coordination occurs) is desirable but, ideally, you would

get enough optimists to generate efficient coordination while getting all of the low-

cost types in Contract 2. Selection favors optimism over low costs because costs only

matter when high effort is expected. Thus, while selection still has an enormously

positive effect, it need not resolve all inefficiencies. This is not an insight we could

have derived from our original experiment or from other existing experiments with

selection along a single dimension. Using our structural model to do counterfactual

exercises makes it possible to gain new insight from existing data at relatively low

cost.

In the second exercise, we hold all of the model’s parameters fixed and enlarge

the simulated sessions to allow for 20 groups while varying the number of groups
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receiving Contract 2 from 0 to 20. For this exercise, we simulate the average effort

for each contract under the Auction treatment. Figure 3 graphs the average effort in

Round 20 as a function of the percentage of groups assigned to Contract 2. Average

effort is broken down by contract with the dotted line showing the weighted average

across contracts. For any proportion of Contract 2 groups, average effort is far higher

in Contract 2 than in Contract 1. But as the proportion of groups using Contract 2

gets large, the average effort with Contract 2 drops. Once all groups use Contract

2, selection cannot affect performance with Contract 2 since both the optimists and

the pessimists are assigned to Contract 2. Thus, strategic anticipation does not

play a role. With no selection, there is nothing to anticipate. The average effort,

weighted across contracts, rises gradually as the proportion of groups using Contract

2 rises. Moving from a regime with only Contract 1 to a regime with only Contract

2 has a modest positive effect on productivity. This effect must equal the direct

incentives’ effect as measured by the difference between Contracts 1 and 2 in the

Random treatment. With no selection and, by extension, no strategic anticipation,

only the direct effect of higher incentives to coordinate at high effort levels remains.

As a final counterfactual exercise, we increase the group size from four to six. In

the experimental data of the CIQ study, effort levels were quite high for Contract

2 in the Sort treatment. This leaves little room for improvement in the Auction

treatment (limiting the measured effect of strategic anticipation). Using groups of six

makes it harder to coordinate at high effort levels, implying that the ceiling at 40 plays

a smaller role. Simulating the game with groups of four, 78% of the improvement

with endogenous assignment to Contract 2 is due to selection (slightly more than the

73% figure in the real data). The proportion of the improvement with endogenous

assignment attributed to selection drops to 66% when we simulate the game with

groups of six. Moving to the larger groups decreases the importance of selection

and, by extension, increases the importance of strategic anticipation. The mixture of

subjects’ types and subtypes is held fixed across the two simulation exercises, hence

the increased importance of strategic anticipation must be due to a less binding

ceiling allowing more room for improvement in the Auction treatment. There are two

points to be taken from this counterfactual exercise. First, the measured effect of

strategic anticipation depends both on the distribution of types and subtypes within

the population and the strategic environment. Second, while the quantitative effect

of selection is reduced, the qualitative conclusions change little. Most of the effect of
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Figure 3: Simulations of Auction Treatment with 20 Groups
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Notes: The Figure graphs the average effort in Round 20 as a function of the percentage of groups

assigned to Contract 2. Average effort is broken down by contract with the dotted line showing the

weighted average across contracts.

endogenous assignment to incentive contracts is due to selection.

6 Concluding Remarks

Structural models lie at the heart of empirical economic analysis. Their breadth

stretches from offering an organizing principle to understand the data to simulating

counterfactuals. This study uses a structural learning model that combines stochastic

fictitious play with sophisticated learning. Here, the model is used to evaluate the

robustness of the results in the study of Cooper, Ioannou, and Qi (2018) and to

investigate their broader implications. The model’s parameters are estimated from

the data. Ex ante heterogeneity in the beliefs of unsophisticated learners as well as
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heterogeneity between unsophisticated and sophisticated learners play a central role

in our model’s ability to track the data.

Ultimately, structural models can widen and further the scope of the original

experiments. First, an estimated structural model identifies unobservable subjects’

characteristics, such as pessimistic and optimistic beliefs, strategic anticipation, and

experience weights. Second, using these identified characteristics, researchers can con-

duct counterfactual experiments without conducting additional experiments. Coun-

terfactual experiments help researchers break the limitation of the original experi-

mental designs, which can often be limited by extraneous factors, such as financial

support, time constraints and the size and composition of the experimental subject

pool. Finally, structural model estimations can make ex ante predictions that in-

form the design of future experiments. For example, the model here finds that the

importance of strategic anticipation depends on the strategic environment. Future

experimental designs can test this prediction by manipulating contract assignment

mechanisms and the levels of subjects’ information.
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