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Abstract

We propose an equilibrium model of behavior with Moore machines. The
machines are subjected to some small likelihood of committing implementation
errors. We analyze the machine game, where each player chooses in the begin-
ning and commits thereafter to a machine to play an infinitely-repeated game.
A pair of machines induces a sequence of action profiles, which are modelled
by a Markov process. We derive predictions on a set of 2x2 games consisting
of payoff variations of the Prisoner’s Dilemma, Stag Hunt and Battle of the
Sexes. Crucially, predicted pairs differ across payoff variations. We also con-
duct experiments with a high continuation probability (specifically, 6 = 0.99),
and contrast the frequent patterns mined from the experimental data with the
equilibrium game plays and the action profiles induced by the equilibrium ma-
chine pairs. We find that almost all predicted plays and machines find support
in the data.
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1 Introduction

Folk Theorems establish, under a variety of assumptions about the players’ prefer-
ences, that a multitude of payoff profiles is compatible with the Nash equilibrium in
an infinitely-repeated game.! Yet the abundance of Nash equilibrium payoff profiles
is problematic as the characterizations often predict profiles with no empirical valid-
ity (see Friedman (1971), Tirole (1988), Fudenberg and Maskin (1993)). A model of
behavior that predicts instead only empirically-valid profiles would therefore be more
credible. Another desideratum for any model of behavior is that it delivers changes
(in the right direction) in predicted behavior for variations in the payoffs within a
game. Indeed, experimental literature provides compelling evidence that variations
in the payoffs may influence behavior. In the Prisoner’s Dilemma, Blonski, Ockenfels,
and Spagnolo (2011) point out that cooperation rates depend on the payoff earned
by cooperating when the other player defects (see also Dal Bé and Fréchette (2018)).
In the Stag Hunt, Battalio, Samuelson, and Van Huyck (2001) argue that the payoff-
dominant equilibrium is more likely to emerge the smaller the optimization premium
is.? Lastly, in the Battle of the Sexes, Sonsino and Sirota (2003) find that the propor-
tion of pairs alternating on the two pure-strategy Nash equilibria varies considerably
across different payoff matrices (see also Arifovic and Ledyard (2018)).

In the present study, we propose an equilibrium model of behavior in infinitely-
repeated games that tackles with the above challenges. Our theoretical framework
assumes first a generalized strategy subspace. The set of possible strategies in re-
peated games is infinite (uncountable) making it unrealistic and impractical to expect
a player to thoroughly explore such an infinite set. We thus restrict the space dras-
tically by considering only strategies defined by finite-state automata called Moore
machines (Moore (1956)). A Moore machine consists of a finite set of internal states
(one of which is specified to be the initial state), an output function and a transition
function. We assume further that the machines are subjected to some small likeli-
hood of committing errors in the implementation of actions along the lines of Selten’s
trembling hand (Selten (1975)). We thus study the players’ behavior by analyzing the

!The Folk Theorem in repeated games with discounting states that, for every feasible and in-
dividually rational stage-game payoff profile, there is a discount factor large enough such that the
payoff profile can be generated by an equilibrium of the repeated game.

2The optimization premium is the difference between the payoffs of the best response to the other
player’s strategy and the inferior response. The relationship between the optimization premium and
the payoff-dominant equilibrium is corroborated in Dal B, Fréchette, and Kim (2021).



machine game, where each player chooses in the beginning and commits thereafter to
a machine to play an infinitely-repeated game.

In the proof-of-concept application, we first specify a limited number of archetypal
machines consisting of no more than two states. Although this subspace is relatively
small, it is still sufficiently rich to support sophisticated strategic behavior, such as
punishments, triggers as well as anticipation of punishments and triggers (see Stahl
(1996, 1999), Stahl and Haruvy (2012)). A pair of machines induces a sequence of
action profiles, which are modelled by a Markov process. The occurrence of errors
ensures that the process is ergodic, which enables us to compute the invariant distri-
bution of the action profiles for each machine pair. We derive predictions on a set of
2x2 games consisting of three payoff variations of the Prisoner’s Dilemma and Stag
Hunt, and two payoff variations of the Battle of the Sexes. In each game type, we
allow for both symmetric and asymmetric versions.?

We next conduct online experiments with a high continuation probability (specif-
ically, § = 0.99), where subjects are paired in a fixed matching protocol to play one
of the aforementioned games with perfect monitoring and complete information. Fi-
nally, we adopt the methods from Ioannou et al. (2025) (inspired from the Winepi
algorithm of Mannila, Toivonen, and Verkamo (1997)) to mine the experimental data
for frequent patterns in each game,* and validate them against the equilibrium game
plays and the action profiles induced by the equilibrium machine pairs. Crucially,
our validation procedure is markedly different from studies that utilize maximum
likelihood estimation to find the proportion of the population that uses a particular
strategy /machine. Here, we determine what percentage of the frequent patterns de-
tected in each game could have been generated by a specific equilibrium machine (see

Subsection 5.3 for more details).”

3 Asymmetry in the payoffs may complicate the environment for the players or, under suitable
parametrizations, simplify it. The former will happen if payoff-asymmetry causes a normative con-
flict amongst such principles as efficiency and egalitarianism (Nikiforakis, Noussair, and Wilkening
(2012)). In contrast, payoff-asymmetry may simplify the environment if it makes an efficient and
egalitarian profile salient relative to the other asymmetric ones. We test here both environments.

4Joannou, Mathevet, Romero, and Zhang (2025) show that in games with a sufficiently high
continuation probability, oftentimes participants reach a predictable way of playing the game (i.e.
a frequent pattern). Therefore, it is only natural to compare the frequent patterns extracted from
the experimental data to the induced action profiles of the predicted machines.

A pattern, in general, cannot be identified with one single machine (see the inference problem of
McKelvey and Palfrey (2001)), but with a set of machines. Consequently, even though the pattern
can be extracted (given that the history of play is publicly observed), we can only attribute it to a
set of possible machines.



We make four key contributions in this paper. Though we are neither the first
to conduct an experiment that utilizes a high continuation probability® nor the first
to use asymptotic theory to derive predictions, we are the first to integrate the two
together. The close proximity of the continuation probability to 1, allows a direct com-
parison between the asymptotic predictions and the frequent patterns mined from the
experimental data. Our approach is thus holistic in the sense that it combines theoret-
ical predictions with an empirical investigation by means of a controlled experiment.
Furthermore, the high continuation probability induces a sufficiently long interaction
between the same two participants (in expectation 100 periods of game play), which
gives us insights into what happens in long repeated games (for example, whether
cooperation/coordination will be sustained).

The second contribution is that the proposed theoretical framework is versatile
enough to predict different machine pairs for variations in the payoffs within a game.
Importantly, the predicted pairs are also in line with the comparative statics drawn
from the existing literature. For example, holding everything else constant, Dal Bé
and Fréchette (2018) argue that, in the Prisoner’s Dilemma, if (i) the gain from
defection when the other player cooperates, and (ii) the loss from cooperation when
the other player defects both go down, then the frequency of cooperative plays will go
up. Though, in the first version of the Prisoner’s Dilemma, the proposed framework
does not predict cooperative plays, but defecting ones, in the second version, where
both aforementioned conditions go down relative to the first version, the framework
predicts both cooperative and defecting plays.

Our third contribution is substantive. We find that almost all of the equilibrium
game plays and action profiles induced by the equilibrium machine pairs find support
in the data. This finding is important for two reasons. First, it provides strong
evidence to support the empirical validity of the proposed theoretical framework.
Second, it allows researchers to take a step forward by identifying plausible machines
deployed by participants, which can help navigate future theoretical work towards
refinements or conditions that lead to the use of these machines.

The fourth contribution is a statistical model that allows us to determine the

games where the theoretical model performs (relatively) better. In our application,

6Very few studies exist that utilize such a high continuation probability. We are aware of one
study that utilizes a 6 = 0.99 and 0.995 (Ioannou et al. (2025)), one study that utilizes a § = 0.98
(Romero and Rosokha (2019)), and two studies that utilize a 6 = 0.95 (Romero and Rosokha (2018,
2023)).



equilibrium game plays have a point mass distribution. Standard, statistical hy-
pothesis testing cannot be used on this occasion as a single, non-compliant (to the
equilibrium predictions) play is a sufficient datapoint to provide evidence against the
theoretical prediction. We address this issue by modifying the statistical approach of
Ioannou and Makris (2019) to assess the closeness (in a sense explained in Subsection
5.4) of the empirical distribution to the theoretical one in each game.

The paper is structured as follows. We first situate the current study in the
relevant literature. In Section 3, we present the theoretical framework and a proof-of-
concept application. In Section 4, we present the games, the experimental protocol,
and the theoretical predictions. In Section 5, we first explain briefly the approach
utilized to mine the frequent patterns. We then proceed to contrast the frequent
patterns detected in the experimental data with the predicted game plays, and the
action profiles induced by the predicted machine pairs. Lastly, we provide a statistical
approach to evaluate the theoretical model proposed across our selected games. In

Section 6, we offer concluding remarks.

2 Related Literature

The paper relates and contributes to a few strands of the literature. First, the present
study adds to an extensive literature on equilibrium selection. In this strand, we can
identify five themes. In the first theme, we find the seminal notions of risk and payoff
dominance due to Harsanyi and Selten (1988). The second theme utilizes structural
models to select equilibria.” The third theme centers on the prevailing common view
that in order to escape a prediction of equilibrium indeterminacy, the environment
needs to possess a sufficiently large degree of heterogeneity and/or of asymmetric
information (see loannou (2022)). Of special interest in this theme (and relevant
to our study as well) are the coordination games. The theory of Global games of
Carlsson and van Damme (1993) constitutes the most popular approach to escape
the prediction of equilibrium indeterminacy by means of deploying uncertainty about
the economic fundamentals (see also Morris and Shin (1998, 2003)).* The fourth

"For instance, Zhang and Hofbauer (2016) use Quantal Response equilibrium as a homotopy
method for equilibrium selection to study 2x2 coordination games (see also Turocy (2005)).

8 An alternative approach, the theory of Poisson games, models the number of actual players as
a Poisson random variable to capture population uncertainty in large coordination games (Makris



theme includes theories that rely on evolutionary approaches as a mechanism to
coordinate on certain equilibrium outcomes (e.g. Ellison (1993), Kandori, Mailath,
and Rob (1993), Cooper (1996), Binmore and Samuelson (1997, 1999)). Finally, the
fifth theme in this strand, and the one more closely related to this study, includes
theoretical contributions that rely on some boundedly rational learning process to
select an equilibrium outcome (e.g. Ellison (1997), Jéhiel (2001)).

Our paper also pertains to the strand that studies the set of Nash equilibrium
payoffs and the structure of the equilibria in the machine game. Constraining the
players in the infinitely-repeated game to choose machines in lieu of (repeated-game)
strategies does not alter the set of equilibrium payoffs (i.e. we obtain the same con-
clusion as that of the Folk Theorem). However, including in the ordering of players’
preferences a dislike towards the machine complexity (secondary to the payoffs) im-
proves predictability. Specifically, Abreu and Rubinstein (1988) show that, if agents’
preferences are increasing in repeated-game payoffs and decreasing in the complex-
ity of the machines employed, the set of Nash equilibrium payoffs that can occur is
dramatically reduced from the Folk Theorem result. Yet the authors indicate that
a wide variety of payoffs still remain consistent with equilibrium behavior even in
the presence of complexity costs.” Existing literature also characterizes the structure
of the equilibria in the machine game. Abreu and Rubinstein (1988) show that in
any equilibrium of the machine game there is one-to-one correspondence between the
actions of each of the two players (see also Piccione (1992)).

A third strand that relates to this study is the recent literature investigating
the strategies experimental subjects use in infinitely-repeated games. Two general
approaches have been used to tackle with the issue of strategy inference. The first
approach involves direct observation of strategies using the strategy elicitation method
(Selten (1967)). Specifically, subjects are asked to directly design their strategy,
which is then deployed to play the game in lieu of the subject (e.g. Romero and
Rosokha (2018, 2019, 2023), Dal B6 and Fréchette (2019)). The second approach

(2008)).

9 Abreu and Rubinstein (1988) define the complexity of a machine as the number of states of the
minimal automaton implementing it, while Banks and Sundaram (1990) argue that the traditional
number-of-states measure neglects some essential features, such as informational requirements at a
state. They propose instead a criterion of complexity that takes into account both the size (number
of states) and transitional structure of a machine. Under this proposition, they prove that the
resulting Nash equilibria of the machine game are now trivial: the machines recommend actions in
every period that are invariably stage-game Nash equilibria.



involves indirect inference of strategies from the observed realization of behavior (the
so-called ‘direct-response’ method). The most common method of indirect inference
is to use a finite mixture model to estimate the proportion of the population that
uses a particular strategy (e.g. Dal B6 and Fréchette (2011), Fudenberg, Rand, and
Dreber (2012), Vespa (2020))."

The disadvantage of the indirect-inference approach is that, at the estimation
stage, the researcher has to specify the set of all available strategies. The advan-
tage of using the indirect-inference approach over the strategy-elicitation approach is
that the researcher does not interfere nor restrict subjects’ behavior during the ex-
periment. Indeed, many researchers warned of this caveat in the strategy-elicitation
approach. Roth (1995) points out on p. 323 that “having to submit entire strategies
forces subjects to think about each information set in a different way than if they
could primarily concentrate on those information sets that arise in the course of the
game.” Rand, Greene, and Nowak (2012) and Rand et al. (2014) corroborate Roth’s
point as they find evidence that making people think deliberately lowers their co-
operative behavior in the repeated Prisoner’s Dilemma and Public Goods games.!!
These reasons seemed compelling enough to lead us away from the strategy-elicitation
method, and towards implementing a non-intrusive environment where subjects play

the infinitely-repeated game directly without being asked to construct strategies.

3 Theory

3.1 Preliminaries

To simplify exposition, we start with some notation. The stage game is represented
in standard strategic (normal) form. The set of players is denoted by I = {1,...,n}.
Each player ¢ € I has an action set denoted by A;. An action profile a = (a;,a_;)

consists of the action of player i and the actions of the other players, denoted by

10 Alternatively, Engle-Warnick and Slonim (2006) determine the best-fitting set of strategies based
on a fitness function and an increasing cost for larger sets of strategies.

"Brandts and Charness (2011)) survey twenty-nine papers to investigate similarities and differ-
ences in the outcomes of the direct-response method versus the strategy-elicitation method. The
authors find no difference in sixteen papers, find differences in four papers, and find mixed evidence
in nine papers.



a_; = (a,...,a;_1, 041, ...,a,) € A_;. In addition, each player i has a real-valued,
stage-game, payoff function g; : A — R, which maps every action profile a € A into
a payoff for 7, where A denotes the cartesian product of the action spaces A;, written
as A = >I< A;. In an infinitely-repeated game with perfect monitoring, the stage game
in each Zt:iine period t = 0,1,... is played with the action profile chosen in period ¢
publicly observed at the end of that period. The history of play at time ¢ is denoted
by ht = (a° ...,a""1) € A" where a" = (a}, ..., a’) denotes the actions taken in period

r. The set of histories is given by

i Oa
t=0

where we define the initial history to the null set A° = {@}. A strategy s; € S;
for player 7 is a function s; : H — A;, where the strategy space of i consists of K;
1 g2 ..,SZK"

discrete strategies; that is, S; = {s;, s7,. }. Furthermore, we denote a strategy
combination of the n players except ¢ by s_; = (s1,...,8i-1, Si41,---, Sn). The set of
joint-strategy profiles is denoted by S = S; x --- x S,,. Each player ¢ has a payoff
function 7! : S — R, which represents the average payoff per period when the joint-

strategy profile is played for ¢ periods.

3.2 Moore Machines and Errors

The number of possible (repeated-game) strategies in a repeated game increases ex-
ponentially with the number of periods, making it impractical to deal with such
a large number of strategies. We thus restrict the strategy space drastically by
considering only strategies defined by finite-state automata called Moore machines
(Moore (1956)). A Moore machine for player i, M;, in an infinitely-repeated game
G = (I{Si}icr, {mi}ticr) is a four-tuple (Q;, ¢°, fi, 7)) where Q; is a finite set of
internal states of which ¢? is specified to be the initial state, f; : Q; — A; is an
output function that assigns an action to every state, and 7; : Q; x A_; — @Q; is the
transition function that assigns a state to every state and other players’ actions. This
formalization for the transition function fits the natural description of a strategy as

i’s plan of action in all possible circumstances that are consistent with i’s plans.'?

12In contrast, the notion of a game-theoretic strategy for i requires the specification of an action
for every possible history including those that are inconsistent with i’s plan of action. To formulate



Importantly, we assume that players’ behaviors are limited by the constraints
of their inherent nature.'® Such limitations have been treated by researchers under
the notion of ‘errors.” Consequently, we assume that the machines are subjected to
some small likelihood of committing errors in the implementation of their actions a
la Selten’s trembling hand.'* Formally, a player i’s machine in an infinitely-repeated
game G commits an implementation error with probability ¢ when, for any given
state ¢, the output function returns the action f;(q) with probability 1 — e and draws
another action “f;(q)” where fi(q) # “fi(q)” otherwise.'®

3.3 Equilibrium Machines

We study the players’ behavior in the infinitely-repeated game G by analyzing the
machine game where each player chooses and commits to a machine to play the
game. In the following definition, we merely assume that each player’s preferences

are positively sensitive to the payoffs.

Definition 1. A machine game of the infinitely-repeated game G is a strate-
gic game G = (I {M;}ier}, {Pi}icr) in which M, is the set of all available ma-
chines of player ¢ in the infinitely-repeated game, and P; is the expected payoff of

player ¢ when the machines induce the sequence (a*(M;, M_;)):2; of action profiles

and (q"(M;, M_;))?2, of states defined as follows: for i and ¢ > 1, we have
o ¢ (M, M) =g}
o aj(M;, M_;) = fi(qi(M;, M_;))
o ¢ (M, M) = 7i(gh(M;, M), a(M;, M_;)).

The machine game is a strategic one; to incorporate Subgame Perfect equilibrium

considerations, the solution concept needs to be modified to require that after every

the game-theoretic notion of a strategy, one would have to construct the transition function so that
Qi x A— @Q; instead of 7; : Q; X A_; — Q;.

13Conventional game theory rests on the foundation of hyper-rational agents with full ability to
select the most-preferred action. Yet such an assumption is usually defended on its methodological
merits rather than its empirical validity.

“For an experimental investigation of repeated Prisoner’s Dilemma games in the presence of
implementation errors see Fudenberg, Rand, and Dreber (2012).

15Similar approaches have been used in Kraines and Kraines (2000), Brandt and Sigmund (2005)
and Ioannou (2014).



history in the repeated game, the machines constitute an equilibrium of the machine

game.' We next state formally our solution concept.

Definition 2. Machines (M}, M*,) constitute a Nash equilibrium in the machine

game G g of the infinitely-repeated game G, if for every player ¢,
Pi(Mi*7Mii) > Pi(Mi/, Mji)

for every machine M of player 7.'7

3.4 A Proof-of-Concept Application

We proceed next to operationalize the aforementioned framework using the Markov
process. To simplify exposition, let us consider a 2x2 repeated game.'® In addition,
let us constrain further the set of Moore machines by imposing a bound of no more
than two states in a machine, which gives us a total of 26 machines (see Figure 1). We
denote the set of 26 machines by M, omitting the subscript ¢ given that the players’
strategy sets are the same by assumption. Restricting our attention to the proposed
strategy subspace is appropriate for two reasons. First, the specific subspace accom-
modates elements of bounded rationality as envisioned by Simon (1947). Indeed, in
this context, bounded rationality suggests that a player may not consider all feasible
strategies but limit herself to simpler ones.!” Second, the proposed subspace is still

rich enough to allow for sophisticated strategic behavior, which incorporates not only

16 As Osborne and Rubinstein (1994) point out, such a modification implies that the play of the
machines does not have an introductory phase — only a cycling one. In the application in Subsection
3.4, where we apply the Markov process, the expected payoffs are independent of the initial condition,
hence our notion of equilibrium can be extended to Subgame Perfection.

I7In the application in Subsection 3.4, we restrict attention to pure equilibrium machine pairs in
line with our theoretical framework, where a player chooses (once) in the beginning and commits
thereafter to a machine; looking at mixed equilibrium machine pairs is beyond the scope of this
exposition.

18 An application of the Markov process on repeated, 2-player games with arbitrary actions can
be found in Stewart, Parsons, and Plotkin (2016). An application of the Markov framework on
repeated, n-player games with two actions can be found in Hauert and Schuster (1997), Hilbe et al.
(2014), and Hilbe et al. (2017).

9 A more complex machine is more likely to break down. It is also more difficult to learn and
implement. For these reasons, a player values simpler machines. Kuzmics, Palfrey, and Rogers
(2014) provide theoretical and empirical evidence to suggest that simplicity is a natural criterion for
strategy choice.



Figure 1: ONE-STATE AND TWO-STATE MOORE MACHINES (M)
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punishments and triggers, but also anticipation of punishments and triggers. Let us
also point out that the choice of a cap at two states finds support in the literature in
evolutionary games and learning models (e.g. Hanaki et al. (2005), Imhof, Fudenberg,
and Nowak (2007), Ioannou and Romero (2014) and Dal Bé and Fréchette (2018)).
In the 2x2 repeated game, each period of play leads to an action profile j (j =
1,2,3,4): (A, A), (A, B), (B, A), and (B, B). Note that the first position denotes the
action taken by player ¢ and the second position that of player —i. The transition
rules are labeled by quadruples (o1, 02, 03,04) of zeros and ones, where o; is 1 if the
(transition) rule plays A, and 0 if the rule plays B after profile j is realized. Thus,
there are 2% = 16 possible transition rules.?’ Furthermore, as highlighted earlier, we
will assume that the machines are error-prone; let a machine have transition rule
P = (p1, 2, p3, p1) where p; is strictly positive denoting the probability of choosing A
after the corresponding profile of the previous period. The space of all such rules is
the four-dimensional unit cube; the corners are just the degenerate transition rules.
A transition rule p = (p1,p2,ps3,ps) that is matched against a transition rule
qa = (¢1,42,43,qs) yields a Markov process where the transitions between the four

possible states?! are given by the matrix

par pil—q) (Q=p)a L —p)1—aq)
P2z p2(l—q3) (L—p2)gs (1 —p2)(1—q3)
P3¢z p3(l—q) (1—=p3)ge  (1—p3)(1—qo)
Paqs pa(l—aq)  (I—pi)a (1 —pa)(1—qa)

If p and q are in the interior of the strategy cube, then all entries of this stochastic
matrix are strictly positive; that is, the presence of errors ensures that the chain is er-
godic. Consequently, there exists a unique stationary distribution ¢P/4 = (¢, ¢y, ¢3, ¢4)
such that pg»") is the probability of being in state j in the n* period, and converges to
¢j forn — 0o (j =1,2,3,4). The components ¢; are strictly positive and sum up to
1. The stochastic vector ¢ is a left eigenvector of the matrix above for the eigenvalue
1. It follows that the expected payoff for player ¢ using p against player —i using q

is given by

20Tn addition, there are two possible initial conditions for a total of 32 transition rules. However,
as indicated shortly, the unique stationary distribution and the expected payoffs are independent of
the initial conditions.

21To be consistent with the conventional notation in Markov chains, the word ‘profile’ is replaced
with the word ‘state.’

11



Pi(p,q) = 6:(A, A)pr + g:(A, B)o2 + 6:(B, A)¢s + 9:( B, B) s, (1)

where the coefficients are the stage-game payoffs. Notice that ¢; and the expected
payoffs are independent of the initial conditions.

The payoff obtained by a machine using transition rule p against a machine using
transition rule q can be computed via (1). Computing the ergodic distribution of
the realized actions for each machine pair enables us to obtain the 16x16 payoft
matrix. However, if one wants to compute the limit value of the payoffs for ¢ =
0, the aforementioned argument cannot be applied as the transition matrix is no
longer irreducible hence the stationary distribution ¢ is no longer uniquely defined.
Nevertheless, using the approach in Nowak, Sigmund, and El-Sedy (1995), one can
show, without loss of generality, that when a machine using a transition rule p is
paired with a machine using transition rule q, the transitions between their stationary
regimes occur with a frequency proportional to €; hence, do not affect the expected
payoff as € — 0. This allows us to also compute the 16x 16 payoff matrix in the case
of € — 0. In the Supplementary Appendix, we provide (for expositional purposes)
the payoff matrix for ‘Always-Defect’ (ALLD), ‘Tit-For-Tat’ (TFT), ‘Grim-Trigger’
(GT) and ‘Win-Stay, Lose-Shift’ (WSLS) in the presence of a small implementation
error level affecting the interaction. We also provide the 16x16 payoff matrix in the

case of € — 0.

3.4.1 Moore Machines, Transition Rules and $-Machines

Let us conclude this section by clarifying the differences across some key components
of our framework. In Subsection 3.4, we indicated that there are 2* = 16 transi-
tion rules. Yet in Figure 1, we display 26 (one-state and two-state) Moore machines.
This discrepancy between transition rules and machines is due to the inclusion in
the machine definition of the initial state ¢{. However, recall further that the invari-
ant distribution, and thereby the expected payoffs in the 16x16 payoff matrix, are
independent of the initial conditions. This independence from the initial conditions
makes the initial state in the formalization of a Moore machine redundant.

In this context, we introduce the notion of a behavioral machine®* (henceforth, for

brevity, referred to as -machine). Specifically, a S-machine is a three-tuple (Q;, fi,

22Joannou and Romero (2014) alternatively refer to them as rules of behavior.

12



7;) where Q;, f; and 7; are defined as before. With this definition in place, we can
identify 15 S-machines. In Figure 2, we provide the 15 S-machines. Each of the 15 (-
machines is matched with a transition rule.?® In addition, a S-machine (or transition
rule) corresponds to either one or two Moore machines in the sense that the latter
implement the same underlying behavior as the S-machine. In Figure 2, we also match
the S-machines with the equivalent Moore machine(s) where the numerical labels of
Moore machines are taken from Figure 1. For the reader’s convenience, we also include
either the commonly-used name or a brief description of the respective behavior.
Finally, notice that the 15 S-machines cover the entire M subspace. Henceforth, we

will only be referring to S-machines.

4 Experimental Design & Theoretical Predictions

4.1 Stage Games

Our choice of games is not coincidental. We targeted the Prisoner’s Dilemma, Stag
Hunt and Battle of the Sexes, where it is well documented that variations in their
payoffs may influence behavior. Furthermore, these stage games cover a wide variety
of strategic situations, characterized by strategic dominance, Pareto dominance and
coordination motives.

The Prisoner’s Dilemma (PD) has become the workhorse to investigate social
interactions. The PD is characterized by the relation 7" > R > P > S where the
letters arise from the generic payoff matrix in Table 1. Furthermore, it is often
required that 2R > T + S so that alternations between cooperation and defection
are not more profitable than joint cooperation. Standard equilibrium theory predicts
that, in the single-shot PD game, the Pareto-dominated action profile of mutual
defection will emerge. Adding more periods to the game does little to improve the
theoretical outlook as long as the last period is common knowledge. If the last period
is not known, subject to the assumptions of the Folk Theorem, nearly any path of

play can be supported in equilibrium. Yet laboratory behavior is susceptible to both

ZTransition rule (S1%%) cannot be captured by a 3-machine. This rule chooses A forever if action
profiles (A, A) or (A, B) occur, and chooses B forever if (B, A) or (B, B) occur. Yet it cannot be
depicted by a S-machine because its two (absorbing) states are disconnected.
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Figure 2: EQUIVALENCIES
Transition . Moore s

Rule B-Machine Machines Description

50000 0 = % 2,14 Quick A, then B

50001 eﬁa 13,26 BA or A Once

50010 oﬁ% 12,25 BB or A Once

50011 09 11,24 Alternations

50100 9 : % 10 AA Triggers B

50101 Qﬁe 9,23 Tat-For-Tit
&

§0110 Qﬁa 8,22 Win-Shift,Lose-Stay
& D

§0111 0‘9 7,21 AB or B Once
&

g1000 9 - % 6 Grim-Trigger

§1001 ”ﬂa 5,20 Win-Stay,Lose-Shift
SN,

glo1o 4,19 Tit-For-Tat
& G

glo11 ”a@ 3,18 AA or B Once
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commonly-used name or a brief description of the behavior.

14

Notes: The first column indicates the transition rule, where each rule is denoted with its respective
quadruple but without the commas. The second column displays the respective S-machine. The
third column indicates the equivalent Moore machines in the sense that they implement the same

underlying behavior as the corresponding [-machine, and the fourth column provides either the



Table 1: GENERIC PRISONER’S DILEMMA PAYOFF MATRIX

Cooperate Defect

Cooperate R S
Defect T P

Notes: Players either Cooperate (C) or Defect (D). The payoffs are those of the row player. If both
players choose ‘C,” then each earns the Reward payoff (R). If both players choose ‘D, then each
earns the Punishment payoff (P). If one player chooses ‘D’ and the other one chooses ‘C,” then the

former player earns the Temptation payoff (T) and the latter earns the Sucker’s payoff (S).

the relative payoffs and the horizon of the game (see Embrey, Fréchette, and Yuksel
(2018), Dal B6 and Fréchette (2018)).%

The Stag Hunt (SH) is a coordination game, which can be seen as a parable
of social situations in which coordination can be pursued either to increase mutual
rewards (which requires necessarily collaboration) or to earn lower rewards (which
does not require collaboration). Using the letters from the generic PD matrix for
convenience, the SH is characterized by the relation T'< R > P > S. In SH games,
typically, there is one mixed Nash equilibrium and two pure-strategy Nash equilibria
that are Pareto-ranked: a payoff-dominant (or Pareto efficient) equilibrium and a risk-
dominant equilibrium. Battalio, Samuelson, and Van Huyck (2001) indicate that, in
experimental SH games, the sensitivity of subjects to the history of the other player’s
play is greater in games with a larger optimization premium. Thus, the risk-dominant
equilibrium is more likely to emerge the higher the optimization premium is.

The Battle of the Sexes (BoS) is another coordination game. It is characterized
by the relation 7' > S > R = P. Similar to SH, there is one mixed Nash equilibrium
and two pure-strategy Nash equilibria. However, in contrast to SH, the two pure-

strategy Nash equilibria in this game create a tension between the two players due to

24Dal B6 and Fréchette (2018) in their meta-analysis of PD games, reduce the number of payoff
parameters to g (the gain from defection when the other player cooperates) and [ (the loss from
cooperation when the other player defects) to conclude that cooperation is decreasing in both g and
I. Blonski, Ockenfels, and Spagnolo (2011) propose an axiomatic approach for equilibrium selection
that revolves around providing conditions for when cooperation is more likely. Specifically, they
characterize a selection criterion that results in a critical discount factor 6* = %, which
is strictly greater than the minimum discount factor § required to support mutual cooperation.
Blonski, Ockenfels, and Spagnolo (2011) show that when Ad and Ad* change in opposite directions,
0* fares much better as a tool for predicting changes in the frequency of cooperation than the
standard discount factor.
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opposing preferences: each player earns more in a different equilibrium than the other.
Nevertheless, repeated interactions allow players to reconcile their conflicting interests
intertemporally. Specifically, theoretical analysis has shown that players can achieve
the efficient outcome using an alternating strategy (see Bhaskar (2000), Kuzmics,
Palfrey, and Rogers (2014)), which also finds compelling experimental support (e.g.
Cason, Lau, and Mui (2013), Ioannou and Romero (2014), Arifovic and Ledyard
(2018)).

Figure 3: STAGE GAMES

A B A B A B
Al 32,32 | 12,50 Al 4848 | 12,50 Al 3248 | 12,50
B| 50,12 | 2525 B| 50,12 | 2525 B| 50,12 | 2525
(a) Prisoner’s Dilemma (V1) (b) Prisoner’s Dilemma (V2) (¢) Prisoner’s Dilemma (V3)
A B A B A B
Al 4545 | 0,35 Al 4545 | 042 Al 4545 | 0,42
B| 350 | 4040 Bl 420 | 12,12 Bl 350 | 40,12
(d) Stag Hunt (V1) (e) Stag Hunt (V2) (f) Stag Hunt (V3)
A B A B
Al 00 9,15 Al 33 9,17
Bl 159 | 00 B| 2010 | 33
(g) Battle of the Sexes (V1) (h) Battle of the Sexes (V2)

The payoff matrices of the PD games are indicated in the top row of Figure 3.

The cooperative action is denoted with the letter ‘A’ and the action of defection
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is denoted with the letter ‘B.” Each player’s dominant action is to play ‘B.”>® The
payoff matrices of the SH games are indicated in the middle row. ‘A’ is a strict best
response to any mixture that attaches a probability greater than 0.8 to ‘A,” while ‘B’
is a strict best-response to any mixture attaching a lower probability to ‘A.” In this
game, there are two pure-strategy Nash equilibria {(A,A), (B,B)} and a mixed Nash
equilibrium in which ‘A’ is played with probability 0.8.2¢ Action profile (A,A) is the
payoff-dominant Nash equilibrium and (B,B) is the risk-dominant Nash equilibrium.?
Finally, the payoff matrices of the BoS games, are indicated in the bottom row. The
two pure-strategy Nash equilibria are {(A,B),(B,A)}. Each player receives a higher
payoff in the equilibrium in which she plays ‘B.” Alternating between the two pure-
strategy Nash equilibria leads to the only Pareto optimal outcome. In the mixed
Nash equilibrium, ‘A’ is played with probability 3/8 in the symmetric BoS (V1) game
and, in the asymmetric BoS (V2) game, ‘A’ is played with probability 1/3 for the row
player and with probability 6/23 for the column player.

Our intention is to provide a tight test of the theoretical framework proposed. We
thus include an asymmetric variation in each class of games alongside the symmetric
ones. The symmetric variations of the PD games are taken from Dal B6 and Fréchette
(2011), and the symmetric ones of the SH games are taken from Battalio, Samuelson,
and Van Huyck (2001). The asymmetric matrix in the PD and SH combines the two
respective, symmetric variations. Both the symmetric variation and the asymmetric
one of the BoS games are taken from Arifovic and Ledyard (2018).

The asymmetry in the payoffs of the PD game causes tension amongst two norma-

tive principles: efficiency and egalitarianism. This tension complicates the environ-

25The minimum discount factor required to support mutual cooperation § in a Subgame Perfect
Equilibrium is 0.72 in PD (V1) and 0.083 in PD (V2). A similar conclusion (i.e. more cooperation
in PD (V2)) is also drawn using the criterion of Blonski, Ockenfels, and Spagnolo (2011): the §* is
3L in PD (V1) and 33 in PD (V2).

26Dal B6, Fréchette, and Kim (2021) in their meta-analysis of SH, reduce the number of payoff
parameters to A (the loss arising from an unilateral deviation from the efficient equilibrium) and A
(the loss arising from an unilateral deviation from the inefficient equilibrium). Dal B, Fréchette, and
Kim (2021) find that as the size of the basin of attraction of ‘A’ increases and/or the optimization
premium decreases, subjects become more likely to choose the payoff-dominant equilibrium. The
basin of attraction is the maximum probability of the other player choosing ‘B’ that still makes ‘A’
a best response. Given these parameters, the basin of attraction of ‘A’ is equal to ALH and the
optimization premium is equal to A + A. Thus, in all our SH games, the basin of attraction of ‘A’
is 0.2, while in the SH (V1) game the optimization premium is 10, and in the SH (V2) game the
optimization premium is é—g

2T(A,A) is a risk-dominant profile if its basin of attraction is greater than 0.5, which is not the
case in our selection of SH games.
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ment considerably as players need to recognize and conform to the preferred principle
of the other player. In contrast, in the symmetric PD variations, there exists no
tension between efficiency and egalitarianism as the two are perfectly aligned. In
SH, the specific asymmetric variation simplifies the environment as the efficient and
payoff-dominant equilibrium is also the egalitarian one. As a result, (A,A) is salient
relative to the other asymmetric profiles. Finally, the asymmetry in the payoffs in the
BoS game inhibits egalitarianism even if players alternate on the pure-strategy Nash
equilibria.?® Nevertheless, in the symmetric BoS game, alternating between the two

equilibria does lead to the only Pareto optimal and egalitarian outcome.

4.2 Experiments

The experiments were conducted on Amazon’s Mechanical Turk (henceforth, referred
to as MTurk for brevity). Our initial intention was to conduct the experiments in
a standard laboratory setting with university students. However, as it was only rel-
atively recently that university laboratories had opened after the COVID lockdown
measures, we felt that it was quite likely that the subject pool coming to the lab-
oratory would be biased. Thus, we chose instead to conduct the experiments on
MTurk.

Prior to running the actual experiments, we imposed a restriction that only US-
based individuals could sign up for an experimental session. This requirement was
essential to reduce the likelihood of dealing with individuals that were not proficient in
English — the language of the experimental instructions. At the portal, participants
were first asked to provide informed consent. Then, they had to go through the
experimental instructions and complete a quiz to ensure their understanding of the

game. The instructions emphasized that in order to proceed to the game-play stage,

281n light of recent evidence documenting that egalitarianism and efficiency are strong attractors
of behavior (see Ioannou et al. (2025)), one may wonder how many machine states are needed to
attain an allocation that is both efficient and egalitarian in the asymmetric BoS game and, thereby,
how restrictive is the choice of only one-state and two-state machines in the machine space. To
attain an efficient and egalitarian allocation, a pair of machines would need to induce the action
profiles {(A4, B), (4, B), (4, B), (A, B),(A,B),(B, A),(B, A),(B,A),(B,A)}. Thus, a minimum of
five states would be needed. The action-convergence criterion utilized allowed us to look at all
possible patterns of reasonable length, including patterns that induce the above action profiles (for
more details on the criterion, see Subsection 5.1). We did not locate a pattern longer than a length
of two, which corroborates the findings in Arifovic and Ledyard (2018). Therefore, our choice to put
a cap at two states was non-binding.
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participants had to answer all quiz questions correctly.?? Upon successful completion
of the quiz, participants entered the waiting room where the matching took place.
Once two participants were successfully matched, a game from Figure 3 was randomly
assigned to them and the pair started their repeated interaction. The values in the
payoff matrices denote Experimental Currency Units (ECUs). Participants played
one infinitely-repeated game with perfect monitoring and complete information. In
the experiment, the two actions of the stage games ‘A’ and ‘B’ (in Figure 3) were
labeled as ‘X’ and ‘Y.’ Furthermore, ‘X’ and ‘Y’ were randomized so that, for instance,
(X, X) was the Nash equilibrium in some PDs and (YY) was the Nash equilibrium
in others. Each player’s payoff in the repeated game consisted of the sum of the
ECUs accumulated from each period. The exchange rate, 500 ECUs for $1, was
common knowledge. Initially, for their participation in the experiment, they received a
payment of 2,500 ECUs (i.e. $5). Upon completion of the repeated game, participants
were asked to provide some demographic information. The experimental instructions
and the quiz questions are provided in the Supplementary Appendix.

We used a high continuation probability (i.e. § = 0.99) to induce long interactions
(in expectation 100 periods) between the same two participants. The termination rule
was common knowledge. The actual draw for the length of the repeated games was
done ex ante. The drawn length of the repeated games was 96. We fixed the length
to make consistent comparisons across games without invoking variability in learning
and /or fatigue, which could confound our results.

Participants were allowed to participate in only one session. The sessions lasted
around 45 minutes. Average earnings per participant were $9.80. In total, there were
516 participants that formed 258 datapoints across the 8 games. Table 2 displays the

number of participants who played in each game.

4.3 Experimental Implementation Vis-a-Vis Theoretical Frame-
work
The theoretical framework assumes that players commit from the beginning of the

game to one-state or two-state machines, and locates the Nash equilibrium pairs

based on asymptotic-payoff calculations. Strategic behavior is inherent in the Nash

29Participants were told that repeated failure to answer the questions correctly would result in
their dismissal.
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Table 2: CHARACTERISTICS OF THE SESSIONS

# of
Game Acronym Participants
Prisoner’s Dilemma (V1) PD1 64
Prisoner’s Dilemma (V2) PD2 68
Prisoner’s Dilemma (V3)  APD3 70
Stag Hunt (V1) SH1 62
Stag Hunt (V2) SH2 64
Stag Hunt (V3) ASH3 66
Battle of the Sexes (V1) BoS1 60
Battle of the Sexes (V2)  ABoS2 62

Notes: The Table displays the number of participants who played the corresponding game. A
datapoint consists of a pair of participants (hence the number of datapoints is one half of the above

numbers).

equilbrium solution concepts. Underlying strategic behavior are the assumptions of
rationality and higher-order rationality.>” In the context of the experimental setting,
these assumptions seem quite stringent and far too unrealistic to be satisfied by
subjects (at least) from the very beginning of the infinitely-repeated game. However,
with sufficient experience, subjects are more likely to exhibit strategic behavior in the
game in line with the underlying rationality assumptions. In particular, once subjects
accumulate enough experience, they can better understand the dynamics of the game
(e.g. the long horizon, the implications of their actions, best responding to beliefs,
the strategy set) and can thus foresee the outcome of their game play based on their
own plan of action and the anticipated plan of action of the other player.

The mapping between the theoretical framework and the experimental implemen-
tation begins only after subjects accumulated sufficient experience with the infinitely-
repeated game. At that point, ‘strategic’ subjects based on the knowledge accrued

and introspection decide on how to play the game; that is, lock their plan of action

30A player is rational if she best-responds to her beliefs. If she believes others are rational, and if
she believes others believe others are rational and so on and so forth, then she satisfies higher-order
rationality.
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for the remainder of the game. Therefore, we (implicitly) partition the phase of accu-
mulating experience and the phase where subjects commit/lock to a particular game
plan, and focus exclusively on the last phase which parallels the theoretical setting.
Our approach finds support in many studies. Consider first the study of Romero
and Rosokha (2018), where the authors allow subjects to construct strategies by de-
veloping a set of rules (i.e. ‘if this, then that’ statements). Romero and Rosokha
divide the infinitely-repeated game into two stages: the ‘free’ stage and the ‘lock’
stage. In the free stage, subjects are able to edit their rule set as the game progresses
and their understanding of the game’s dynamics improves, whereas in the lock stage,
subjects’ rule sets are locked for the remainder of the game. Along similar lines,
studies in the literature that model learning in repeated games, separate the so-called
‘pre-experimental’ phase from the ‘experimental’ one (see e.g. Hanaki, Sethi, Erev,
and Peterhansl (2005), loannou and Romero (2014)); that is, partition the inexperi-
enced, initial behavior of players in the infinitely-repeated game and the experienced
behavior after accruing knowledge of the game’s dynamics. The lock stage in Romero
and Rosokha (2018) and the experimental phase in the learning literature parallel our

last phase where subjects commit to a particular game plan.

4.4 Theoretical Predictions

In Figures 4-6, we display the 15x15 possible S-machine combinations in the PD,
SH and BoS games, respectively. The legend of the respective figures indicates the
expected payoff in equilibrium of the row and column players across all variations.
In the Supplementary Appendix, we contrast the predicted payoffs in the proposed
framework with the theoretical payoff predictions of the Folk Theorem.

Prisoner’s Dilemma Games

In Figure 4, we display the equilibrium pairs and (expected) payoffs across the three
variations. Noticeably, the predictions in all relevant spaces (i.e. payoffs, machine
pairs) are quite sharp.

In PD1, we observe four equilibrium pairs. The expected payoff in all combinations
is 25 for both the row and column players as the pairs induce plays of (B, B) (i.e.
defecting plays). In PD2, we retain the four equilibrium pairs from PD1 that play the
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Notes: The Figure provides the predicted pairs across the three payoff variations of the Prisoner’s

Dilemma.
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(B, B) action profile. However, given that, in this variation, the gain from defection
when the other player cooperates is very small, three equilibrium machines inducing
plays of (A, A) (i.e. cooperative plays) resulting in an expected payoff of 48 for both
players also arise. Thus, in this PD variation, we should expect both cooperative and
defecting plays. Moving into an asymmetric environment that combines the payoffs
from the previous two PD variations is detrimental to the possibility of cooperative
plays. In APD3, we observe that the predictions with respect to equilibrium payoffs

and pairs are identical to those in Figure 4(a).

We formulate next our two PD predictions.
Prediction 1. In PD1 and APDS3, plays within a game consist of (B, B).

Prediction 2. In PD2, plays within a game consist of either (A, A) or (B, B).

Stag Hunt Games

In Figure 5, we provide the equilibrium pairs and payoffs in the SH games. In sharp
contrast to the PD games, in the SH games, machine predictability is compromised.
In all SH games, we observe three classes of equilibrium pairs. In the first class,
we find machines that play (A, A) and thus achieve the Pareto efficient payoff of 45.
Furthermore, in all three variations, the set of machines in this first class is identical.
In the second class, we find equilibrium pairs that play the risk-dominant action
profile (B, B). Finally, in the third class, we find machines that alternate between
(A, A) and (B, B). Importantly, the volume of machines included in the latter two
classes differs from variation to variation.

In SH1, we observe a very large number of equilibrium pairs. The first class
consists of nineteen equilibrium pairs that settle on (A, A). In the second class,
we find equilibrium pairs ‘Quick A, then B, ‘Grim-Trigger’ and others that settle
on the risk-dominant payoff of 40. Finally, in the third class, equilibrium machines
alternate between the payoff-dominant and risk-dominant equilibrium, thus securing
an expected payoff of 42.5 for each player.

In SH2, predictions are sharper relative to SH1. Though the first class of equi-
librium pairs is identical, in the second class that includes machines coordinating at
the risk-dominant equilibrium, we find only one S-machine: ‘Quick A, then B.” Fur-

thermore, in the third class, we have two S-machines: ‘Alternations’ and ‘BA or A
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Figure 5: PREDICTED MACHINE PAIRS IN THE STAG HUNT GAMES
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Once,” which produce the three orange triangles in the figure.

In ASH3, predictability is not as sharp as that in SH2. The first class is again
identical to the other two variations, but the second class is different from both. In
addition to ‘Quick A, then B’ which is an equilibrium choice for both row and column
players, we also have another two [-machines that can be utilized by the column
player to form an equilibrium pair when matched with the row player’s ‘Quick A,
then B:” ‘BB or A Once’ and ‘Grim-Trigger.” Finally, in the third class, in addition to
the equilibrium pairs in SH2, we have one more equilibrium pair: ‘Alternations’ for
the row player and ‘AB or B Once’ for the column player. The asymmetric expected

payoffs are 42.5 and 28.5 for the row player and column player, respectively.

In the SH games, we formulate one prediction.

Prediction 3. In all three SH variations, plays within a game consist of either (A, A)
or (B, B) or alternations between (A, A) and (B, B).

Battle of the Sexes Games

In Figure 6, we provide the equilibrium pairs and payoffs in the two variations of the
BoS games. Given that this is another coordination game, similar to the SH games,
machine predictability is compromised. This is particularly true in BoS1 where all
machines are equilibrium predictions. Machine predictability is improved in ABoS2
but only slightly. Similar to the SH games, there exist three classes of equilibrium
pairs. In the first class, we find machines that coordinate on the row player’s not-
preferred Nash equilibrium (i.e. (A4, B)), whereas in the second class, we find machines
that coordinate on the row player’s preferred equilibrium (i.e. (B, A)). In the third
class, we find machines that alternate between the two pure-strategy Nash equilibria
of the stage game thus achieving Pareto efficient payoffs. The machines in the second
and third classes are identical across the two variations.

In BoS1, in the first class, there are many equilibrium machines resulting in payoffs
(9,15). In the second class, we find, for example, row player’s machines ‘Quick A,
then B,” ‘AA Triggers B’ and ‘Grim-Trigger’ that are matched with column player’s
machine ‘Tat-for-Tit.” The payoffs in this class are (15,9). It is important to note

that given that the payoff matrix is symmetric, machines in the first two classes are
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Figure 6: PREDICTED MACHINE PAIRS IN THE BATTLE OF THE SEXES GAMES
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(@) (9,15) (9,17)
B (15,9) (20,10)
A (12,12)  (14.5,13.5)

Notes: The Figure provides the predicted pairs across the two payoff variations of the Battle of the

Sexes.

interchangeable.®! In the third class, we find ‘Alternations,” ‘BB or A Once,” ‘Tit-
For-Tat” and others that result in alternations between the two pure-strategy Nash
equilibria of the stage game. In this third class, the payoff of each player is 12.

In ABoS2, the machines in the first class constitute a proper subset of those in
the first class of the symmetric variation. The payoffs in this first class are (9, 17).
The machines in ABoS2 in the second and third classes are identical to those in the

symmetric variation. The payoffs in the second class are (20,10) and, in the third

31Tn BoS1, we forewent putting all thirty-two points in the same color to illustrate that the red
squares (i.e. (B, A)) in BoS1 are retained in ABoS2.
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class, the payoff of the row player is 14.5 and the payoff of the column player is 13.5.
The last prediction pertains to the BoS games.

Prediction 4. In the two BoS variations, plays within a game consist of either (A, B)
(i.e. the row player’s not-preferred Nash equilibrium) or (B, A) (i.e. the row player’s
preferred Nash equilibrium) or alternations between (A, B) and (B, A).

5 Findings

We first extract frequent patterns from our dataset using the action-convergence cri-
terion from loannou et al. (2025). We then contrast the frequent patterns mined with
the predicted game plays and the action profiles induced by the predicted machine
pairs. Finally, we provide a statistical procedure to evaluate the theoretical model

pI'OpOSGd aCross our gaimes.

5.1 Frequent Pattern Mining

Recently, loannou et al. (2025) documented that in games with long interactions
between the same participants, oftentimes participants reach a predictable way of
playing the game. The authors propose an action-convergence criterion to extract

32 Following their approach, a pattern p is said to be (1 — ¢)-

frequent patterns.
frequent over interval 7', if p minimizes the frequency of errors while allowing at most
a frequency ¢ of errors over T'. Analogously, we say that a sequence (1 — ¢)-converges
to p (or is (1 — ¢)-convergent) over T, if it admits a (1 — ¢)-frequent pattern over T
Otherwise, the sequence is (1 — ¢)-divergent. Similar to Ioannou et al. (2025), here,
we also consider the last twenty periods of game play and allow a maximum of two
errors within the specified interval; that is, ¢ = 2 = 0.1.%

The results are displayed in Table 3. Overall, we observe that there are 193 pairs
(sequences of game play) that (0.9)-converged (henceforth, for brevity, we omit (1—¢)-

which is always the same) to a pattern out of a possible 258 pairs; this corresponds

32The interested reader should refer to the paper for the technical details.

33In the Supplementary Appendix, we include robustness checks on both the number of errors (1,
2 and 3) and intervals of game-play periods (20 and 25 periods), which confirm the insensitivity of
the results to these reasonable choices of errors and period intervals.

27



Table 3: FREQUENT PATTERNS MINED

PD1 PD2 APD3 SH1 SH2 ASH3 BoS1 ABoS2
Data Points 32 34 35 31 32 33 30 31
Convergent 24 28 22 25 29 26 20 19
E 3 24 3 16 26 22
g 21 4 19 9 3 4
E 7t 3
o ;
_— 13 10
Divergent 8 6 13 6 3 7 10 12
I:I Equal Payoffs Pareto Efficient

Notes: Table 3 displays the number of convergent sequences in the last twenty periods based on
the action-convergence criterion proposed in Ioannou et al. (2025). The limit for errors is two. The
columns indicate the stage games, whereas the rows indicate the frequent patterns mined. Frequent
patterns that are Pareto efficient are displayed with a purple background, whereas egalitarian ones
are displayed with a border. The } (next to 7) is to highlight that given that the matrix is symmetric,
pattern (A,B) and pattern (B,A) in the following row are interchangeable.

to a 75% convergence. The highest percentage of convergence is found in SH2 with
91% (29 pairs out of 32), and the lowest percentage of convergence is found in ABoS2
with 61% (19 pairs out of 31). Strikingly, the 75% overall convergence observed
corresponds to only five patterns: (A,A), (B,B), (A,B), (B,A) and ((A,B),(B,A)).
Frequent patterns (A,A) and (B,B) are detected in the PD and SH games, whereas
(A,B), (B,A) and ((A,B),(B,A)) are mined in the BoS games. Furthermore, it is

important to note that there are changes in subjects’ behavior for payoff variations
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within a given class of games. For instance, in PD1, there are 3 pairs that converged
to pattern (A,A) (i.e. the cooperative profile) and 21 pairs that converged to pattern
(B,B) (i.e. the defecting profile), whereas in PD2, there are 24 pairs that converged
to pattern (A;A) and only 4 pairs that converged to pattern (B,B). Finally, almost all
of the frequent patterns mined reflect a payoff across players that is either efficient or
egalitarian or both. This result corroborates the findings in Ioannou et al. (2025) who

document that Pareto efficiency and egalitarianism are strong attractors of behavior.

5.2 Theory vs. Behavior: Game Plays

We next compare the frequent patterns mined to the equilibrium game plays.** Here,
we hit a big obstacle. Standard, statistical hypothesis testing cannot be used as a sin-
gle pair settling on a non-compliant (to the equilibrium predictions) play is a sufficient
datapoint to provide evidence against the theoretical prediction.?® In Subsection 5.4,
we will provide a formal statistical procedure that assesses the closeness (in a sense
explained there) of the empirical distribution to the theoretical one in each game. But
for now, we will settle to a comparison, by sheer observation, of the frequent patterns
mined in Table 3 with the theoretical predictions. We note that each prediction is
matched with the corresponding result.

Prediction 1 states that in PD1 and APDS3, equilibrium plays within a game
consist of (B, B). In Table 3, we see that in these two games, with the exception of 3
pairs in each game that converged to the cooperative play (A, A), the rest converged

to the defecting play (B, B) in line with the theoretical prediction.
Result 1. In PD1 and APD3, plays within a game consist almost entirely of (B, B).

Prediction 2 pertains to the PD2 game. The theoretical framework predicts either
plays of (A, A) or (B, B). As shown in Table 3, all 28 pairs that converged to a
pattern indeed chose either (A, A) or (B, B).

Result 2. In PD2, plays within a game consist of either (A, A) or (B, B).

34We thus exclude from our analysis sequences of game play that do not correspond to frequent
patterns.

35More specifically, standard hypothesis testing cannot be used when the Hy is that plays follow
a distribution that puts all probability on just the equilibrium play(s) because a single datapoint,
which is inconsistent with the Hy (and hence carries zero probability of occurrence under the Hy),
is sufficient to reject Hy for any (positive) level of significance.
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Prediction 3 states that, in all three SH variations, plays within a game consist
of (A, A) or (B, B) or alternations between (A, A) and (B, B). We see in Table 3
that there is no single pair that alternated between (A, A) and (B, B); nevertheless,
all other pairs did converge to either (A, A) or (B, B) in line with the theoretical

prediction.

Result 3. There is no evidence to support alternations between (A, A) and (B, B) in
any of the SH games. We find that in all three SH variations, plays within a game
consist of either (A, A) or (B, B).

Finally, Prediction 4 prescribes that plays within a game consist of either (A, B)
(i.e. the row player’s not-preferred Nash equilibrium) or (B, A) (i.e. the row player’s
preferred Nash equilibrium) or alternations between (A, B) and (B, A). Indeed, the
results in Table 3 show that all frequent patterns mined were consistent with the

theoretical prediction.

Result 4. In the two BoS variations, plays within a game consist of either (A, B) or
(B, A) or alternations between (A, B) and (B, A).

5.3 Theory vs. Behavior: Game Machines

We compare here the frequent patterns mined from the experimental data with the
action profiles induced by the equilibrium machines. However, such a comparison
is inhibited by a serious hurdle. A frequent pattern extracted reflects a single finite
history; therefore, there are many different machines that can generate it. For ex-
ample, pattern (A,A) can be generated by ‘Grim-Trigger’ and ‘Win-Stay, Lose-Shift’
or ‘Tit-For-Tat” and ‘Quick B, then A.” To overcome this problem, we use a simple
approach: we determine what percentage of the frequent patterns detected in each
game could have been generated by the specific predicted S-machine. Consequently,
we are not so much concerned with whether there are many machines that could fit
to the frequent patterns detected — this is a corollary of the approach utilized. We
are more interested whether the action profiles induced by the equilibrium machines
find support in the data. The results are displayed in Figure 7. For the reader’s
convenience, we also include a x in the bar chart to denote an equilibrium machine.

As mentioned earlier, machine predictions are quite sharp in the PD games. Re-
call that in PD1 and APD3, the predicted outcome is that pairs will end up defecting.
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Figure 7: FREQUENT PATTERNS MINED AND EQUILIBRIUM MACHINES

B-Machine Description Pr‘isoner’s Stag Hunt Battle of
Dilemma the Sexes
g Quick A, then B | o 2 - 2 - X
5
”ﬁg BA or A Once % _LL :((r
Qﬁa BB or A Once T B
ena Alternations z e x
GG s miseers» T T B | X
5
ee Tat-For-Tit x| EER *
9’9 Win-Shift,Lose-Stay | * If :C
9‘9 AB or B Once :L —LJ_\ :
5@ e (= = B[]
aaa Win-Stay,Lose-Shift - * H+—+ z - ol
eﬂg it For-Tat g :| EEEE | :
Oﬁe AA or B Once * s | : I
) *
B
9 a BB Triggers A e | 2 _LL | :
BA Triggers A s | E = *C
Quick B, then A _LLI_I_‘ % —Ljﬁ Z:

* Equilibrium machine for both players
*r Equilibrium machine for row player

xc Equilibrium machine for column player

Vi1 V2 V3

Notes: The first column corresponds to the S-machine. The second column provides either the
commonly-used name or a brief description of the behavior. The remaining three columns (one for
each class of games) show with bar charts the percentage of frequent patterns that could have been

generated by the specific predicted S-machine in each game variation.
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Moreover, S-machines ‘Quick A, then B’ and ‘Grim-Trigger’ are predicted to deliver
this stream of defections. Subjects’ behavior in PD1 and APD3, predominantly set-
tled on the defecting profile. In PD1, 21 out of 24 pairs converged to a pattern of
defections (i.e. 87.5%), whereas in APD3, 19 out of 22 pairs converged to a defecting
pattern (i.e. 86%). These percentages are shown in the bar charts of ‘Quick A, then
B’ and ‘Grim-Trigger’ for PD1 and APD3, respectively. In PD2,; the predicted out-
come is that pairs will either end up defecting or cooperating. In addition to the two
aforementioned f-machines (i.e. ‘Quick A, then B’ and ‘Grim-Trigger’), ‘Win-Stay,
Lose-Shift” and ‘AA or B Once’ also constitute equilibrium ones. The latter two ma-
chines, deliver the stream of cooperative profiles. In fact, ‘Win-Stay, Lose-Shift’ and
‘AA or B Once’ capture 86% of the frequent patterns detected.

In the SH games, the predicted outcomes reflect one of the following three sce-
narios: (i) playing the payoff-dominant equilibrium (A, A), (ii) playing the risk-
dominant equilibrium (B, B), and (iii) alternating between the payoff-dominant and
risk-dominant equilibria ((A, A), (B, B)). In SHI1, all S-machines are supported in
equilibrium. In SH2, the number of equilibrium machines is drastically reduced as a
few machines delivering alternations between the payoff-dominant and risk-dominant
equilibria and a few ones that settle on the risk-dominant equilibrium are no longer
supported. In ASH3, in addition to the equilibrium machines from SH2, some of
the equilibrium machines from SH1 are supported, but only for the column player.
Recall that in all SH games, pairs either ended up at the payoff-dominant equilibrium
or at the risk-dominant equilibrium. More generally, all equilibrium machines across
variations find support in the data with one exception: we do not find any support for
the predicted alternating sequence between the payoff-dominant and risk-dominant
equilibria.

In the BoS games, the predicted plays either have a player choosing their preferred
pure-strategy Nash equilibrium or the two players alternating between the two pure-
strategy Nash equilibria of the stage game. Similar to the SH games, in the BoS
games, almost all machines can be supported in equilibrium. Specifically, in BoS1,
all S-machines are supported in equilibrium, whereas in ABoS2, two -machines are
supported in equilibrium for the row player, another two are supported in equilibrium
for the column player, while the remaining S-machines are supported in equilibrium
for both players. The results here are even more encouraging than those in the SH

games. Recall that in the two BoS variations, subjects either alternated between
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the two pure-strategy Nash equilibria or settled on one of the two pure-strategy Nash
equilibria. We observe that all equilibrium machines deliver either the former behavior
or the latter.

5.4 A Statistical Procedure to Evaluate the Theoretical Model

In Subsection 5.2, we highlighted that standard, statistical hypothesis testing cannot
be used on any of our games as even one pair of players choosing a non-compliant (to
the equilibrium predictions) play provides enough evidence to challenge the theoretical
prediction. To address this issue, we modify the statistical procedure of loannou and
Makris (2019) to assess the closeness (in a sense defined shortly) of the empirical
distribution to the theoretical one. The modified approach thus allows us to determine
the games where the theoretical model performs (relatively) better.

This statistical procedure assumes that pairs’ behavior may be influenced by iid
behavioral errors due to factors ‘outside the theoretical model’ (e.g. short attention
spans, random distractions). To clarify, in the context of our games, we assume
that the total number of non-compliant (to the equilibrium predictions) plays is a
random variable Z ~ Bin(N,r), where Bin(N,7) is the binomial distribution with
size parameter N (i.e. the number of pairs),* and ‘success probability’ . The
key assumption here is that m ~ Beta(a,b) for some exogenously given scalars a >
1,b > 1, where Beta(a,b) is the Beta distribution with parameters a, b. To investigate
whether pairs’ behavior is close to the theoretical prediction of zero non-compliant (to
the equilibrium predictions) plays and get a sense of how close it is, we will examine
whether pairs’ behavior aligns with the Hy that Z ~ Bin(N, ) with m ~ Beta(a,b)
for predetermined values of a and b, paying particular attention to determine the set
of values of (a,b) for which the Hj is rejected.

To conduct our statistical procedure, we will use the total number of non-compliant
plays Z as our statistic from Table 3. We therefore need to derive the probability
distribution of Z under the above Hy. It is shown in Ioannou and Makris (2019) that
the probability distribution of statistic Z under the above Hy is Bin(N, ;%;). Denot-
, a%b) the p-value that corresponds to the realization z of the statistic Z,
it follows that the Hj is rejected given a realization z of the statistic and a level of

ing with p(z

36The size parameter N thus includes both the convergent as well as the divergent sequences. We
do so to obtain a higher bound on the threshold mean errors.
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significance o € (0,1) if

a+b Z( ) a+b '(%M)N_j<a. (2)

We know that p(0;7) = 1 for all 7 € [0,1]. We thus have that the HO cannot be
rejected following a realization z = 0 of the statistic for any mean error —%-. Turning
to the case of a realization z > 0 of the statistic, the magnitude of the mean error
is crucial in rejecting or not the Hy. However, without additional information about
pairs’ behavior, the specific choice of the mean error is arbitrary. With this in mind,
we now shift the focus to asking how large the range of mean error values must be for
a given realization z > 0 to result in a rejection of the Hy. We know that p(z;7) is
increasing in 7 for all z € {1, ..., N}, with p(z; 1) = 1 and p(z;0) = 0. Therefore, there
is a critical threshold for the mean error below which the Hj is rejected, whereas for
all (weakly) higher mean errors the Hy is not rejected. This threshold mean, denoted
hereafter by m(z), is in (0,1) and given implicitly by

N

3 (N ) (2(:))(1 - 2(2)¥ = a. 3)

j== N7

Note now that p(z,7) is decreasing in z for all 7 € (0,1). Consequently, we also
have that m(z) is increasing in z. It follows that the smaller the realization z > 0 of
the statistic, the closer the observed behavior is to the theoretical prediction; that is,
the lower the realization of the statistic, the ‘less often’ the above Hy will be rejected.

The threshold mean errors are displayed on Table 4. We observe that the range of
threshold mean errors is between 0.0260 and 0.3116. The lowest value is in SH2 where
the predictions are well in line with the observed behavior. The highest value is in
APD3 where three pairs played the cooperative action profile (instead of the predicted
defecting one) and thirteen pairs did not converge to a pattern. Evidently, payoff
asymmetry provides an additional layer of complexity in all game types. Overall, the

theoretical model seems to perform the best in the SH games.
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Table 4: THRESHOLD MEAN ERRORS

Hy: Z ~ Bin(N,r) with m ~ Beta(a,b) for

predetermined values of a > 1,b > 1

PD Games

PD1 0.2061
PD2 0.0797
APD3 0.3116
SH Games

SH1 0.0878
SH2 0.0260
ASH3 0.1040
BoS Games

BoS1 0.1933
ABoS2 0.2407

Notes: The level of statistical significance « is fixed at 5%.

6 Concluding Remarks

In the proof-of-concept application, we consider one-state and two-state machines,
and use asymptotic theory in the machine game to derive long-term predictions in
payoft variations of the Prisoner’s Dilemma, Stag Hunt and Battle of the Sexes. Fur-
thermore, we conduct experiments with a high continuation probability and contrast
the theoretical behavior with the empirical one. We find that the proposed theoret-
ical framework does fairly well overall in delivering the experimental behavior. We
discuss next some of the key findings of our study. Wherever possible, we also relate
our findings to those in relevant studies.

We start off with a discussion about the machines (strategies) inferred in the PD
games. As mentioned earlier, there exists a recent literature that applies strategy
elicitation directly to infer subjects’ strategies in the PD games. Though the con-

tinuation probability is different in these studies from ours, the PD payoff matrices
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used are identical.*” Dal B6 and Fréchette (2019) find that subjects choose common
strategies, such as ‘Tit-For-Tat,” ‘Grim-Trigger’ and ‘Always Defect.” Romero and
Rosokha (2018) corroborate the findings of Dal B6 and Fréchette (2019). In Romero
and Rosokha (2023), the authors find that even though many subjects do use mixed
strategies in the beginning of the PD game, strategies tend to become less mixed over
time, and move towards three focal pure-strategies: ‘Tit-For-Tat,” ‘Grim-Trigger’ and
‘Always Defect.” We reach similar conclusions. Figure 7 shows that predicted ‘Grim-
Trigger’ and ‘Quick A, then B’ (i.e. ‘Always Defect’) explain a very high percentage
of the frequent patterns mined in two of the three payoff variations in PD games and
a lower percentage of frequent patterns in the third payoff variation.

We make two additional remarks. First, in the PD games, we do find machines
with defecting absorbing states. This corroborates existing literature. Specifically,
Dal Bé and Fréchette (2011) provide experimental evidence to suggest that even
in treatments where cooperation can be supported in equilibrium (like our selected
variations), the level of cooperation may remain at low levels even after significant
experience is obtained. The authors conclude that “these results cast doubt on the
common assumption that agents will make the most of the opportunity to cooperate
whenever it is possible to do so in equilibrium” (p. 412). Second, Blonski, Ockenfels,
and Spagnolo (2011) find that in PD games, the mean value of cooperation in other
experimental studies (see their Table 6) is 0.43 if 6* < §, which is comparable to our
mean value of cooperation in the three variations of 0.49.

In the SH games, a few of the predicted machines (e.g. ‘Tit-For-Tat,” and ‘BA
Triggers A’) explain more than 60% of the frequent patterns mined in the payoff
variations. Importantly, we find that people do not necessarily coordinate on the
payoff-dominant equilibrium, which corroborates the findings in Dal B, Fréchette,
and Kim (2021). More specifically, in SH1, a large number of pairs end up playing
the risk-dominant equilibrium. The fact that payoff dominance is not used by these
pairs as an equilibrium selection criterion adds to the existing evidence suggesting that
strategic uncertainty is important in coordination games. Though our payoff matrices
are directly taken from Battalio, Samuelson, and Van Huyck (2001), the notable
differences in their matching protocol and horizon with ours does not allow us to make

any head-on comparisons between the two studies.®® Yet we still find that, similar to

3TDal B6 and Fréchette (2019) use the same symmetric PD payoff matrices we use here (i.e. PD1
and PD2) with § = 0.5,0.75,0.9. Romero and Rosokha (2018, 2023) also use PD1 with § = 0.95.
38Battalio, Samuelson, and Van Huyck (2001) use a random matching protocol with 75 periods of
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Battalio, Samuelson, and Van Huyck (2001), the risk-dominant equilibrium is more
likely to emerge the larger is the optimization premium. Finally, we do not find any
evidence of the predicted alternating sequence between the payoff-dominant and risk-
dominant equilibria in the SH games. Clearly, this is an unwarranted prediction that
is neither supported in the experimental data here nor, to the best of our knowledge,
in the existing literature.

In the BoS games, predictability is compromized as almost all machines can be
supported in equilibrium. Nevertheless, all predicted machines find support in the
data. Specifically, as shown in Figure 7, all predicted machines can explain at least
30% of the frequent patterns mined in the two payoff variations of the BoS games.
Furthermore, given that the BoS payoff matrices are taken from Arifovic and Ledyard
(2018), despite their experimental games being finitely repeated, we can still compare
(somewhat) our findings to theirs.”’ Arifovic and Ledyard (2018) find that in the
symmetric game, 40% of the pairs alternate between the two pure-strategy Nash
equilibria, 30% settle on one of the pure-strategy Nash equilibria, and the other 30%
are confused or contentious. We find that in the symmetric game, 43% of the pairs
alternated between the two pure-strategy Nash equilibria, 24% settled on one of the
two pure-strategy Nash equilibria, and 33% did not converge to a pattern. Therefore,
the percentages found in the BoS1 are quite similar to theirs. Finally, Arifovic and
Ledyard (2018) find that the asymmetry in the payoffs led to an increase in the
percentage of pairs ending at the pure-strategy Nash equilibrium, and a decrease in
the percentage of those alternating between the two pure-strategy Nash equilibria.
Both trends are observed in our data as well.

Concluding, we hope that in the near future, similar studies will be carried across
other infinitely-repeated games to confirm the ability of the framework to capture

well long-term behavior.

game play.

39Mathevet (2018) in his axiomatization of plays in repeated games provides a rather weak ax-
iom that eliminates the predicted alternating sequence in our SH games. Specifically, the efficient
simplicity axiom states that a pair would only complexify their convention, if in doing so, at least
one of the players earns more; clearly, in all versions of our SH games, the alternating sequences are
strictly Pareto inferior to the simpler payoff-dominant equilibrium.

40The length of game play in Arifovic and Ledyard (2018) is 40 periods and the matching protocol
is fixed. All this information is common knowledge.
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