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Abstract

We propose an equilibrium model of behavior with Moore machines. The

machines are subjected to some small likelihood of committing implementation

errors. We analyze the machine game, where each player chooses in the begin-

ning and commits thereafter to a machine to play an infinitely-repeated game.

A pair of machines induces a sequence of action profiles, which are modelled

by a Markov process. We derive predictions on a set of 2×2 games consisting

of payoff variations of the Prisoner’s Dilemma, Stag Hunt and Battle of the

Sexes. Crucially, predicted pairs differ across payoff variations. We also con-

duct experiments with a high continuation probability (specifically, δ = 0.99),

and contrast the frequent patterns mined from the experimental data with the

equilibrium game plays and the action profiles induced by the equilibrium ma-

chine pairs. We find that almost all predicted plays and machines find support

in the data.
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1 Introduction

Folk Theorems establish, under a variety of assumptions about the players’ prefer-

ences, that a multitude of payoff profiles is compatible with the Nash equilibrium in

an infinitely-repeated game.1 Yet the abundance of Nash equilibrium payoff profiles

is problematic as the characterizations often predict profiles with no empirical valid-

ity (see Friedman (1971), Tirole (1988), Fudenberg and Maskin (1993)). A model of

behavior that predicts instead only empirically-valid profiles would therefore be more

credible. Another desideratum for any model of behavior is that it delivers changes

(in the right direction) in predicted behavior for variations in the payoffs within a

game. Indeed, experimental literature provides compelling evidence that variations

in the payoffs may influence behavior. In the Prisoner’s Dilemma, Blonski, Ockenfels,

and Spagnolo (2011) point out that cooperation rates depend on the payoff earned

by cooperating when the other player defects (see also Dal Bó and Fréchette (2018)).

In the Stag Hunt, Battalio, Samuelson, and Van Huyck (2001) argue that the payoff-

dominant equilibrium is more likely to emerge the smaller the optimization premium

is.2 Lastly, in the Battle of the Sexes, Sonsino and Sirota (2003) find that the propor-

tion of pairs alternating on the two pure-strategy Nash equilibria varies considerably

across different payoff matrices (see also Arifovic and Ledyard (2018)).

In the present study, we propose an equilibrium model of behavior in infinitely-

repeated games that tackles with the above challenges. Our theoretical framework

assumes first a generalized strategy subspace. The set of possible strategies in re-

peated games is infinite (uncountable) making it unrealistic and impractical to expect

a player to thoroughly explore such an infinite set. We thus restrict the space dras-

tically by considering only strategies defined by finite-state automata called Moore

machines (Moore (1956)). A Moore machine consists of a finite set of internal states

(one of which is specified to be the initial state), an output function and a transition

function. We assume further that the machines are subjected to some small likeli-

hood of committing errors in the implementation of actions along the lines of Selten’s

trembling hand (Selten (1975)). We thus study the players’ behavior by analyzing the

1The Folk Theorem in repeated games with discounting states that, for every feasible and in-
dividually rational stage-game payoff profile, there is a discount factor large enough such that the
payoff profile can be generated by an equilibrium of the repeated game.

2The optimization premium is the difference between the payoffs of the best response to the other
player’s strategy and the inferior response. The relationship between the optimization premium and
the payoff-dominant equilibrium is corroborated in Dal Bó, Fréchette, and Kim (2021).
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machine game, where each player chooses in the beginning and commits thereafter to

a machine to play an infinitely-repeated game.

In the proof-of-concept application, we first specify a limited number of archetypal

machines consisting of no more than two states. Although this subspace is relatively

small, it is still sufficiently rich to support sophisticated strategic behavior, such as

punishments, triggers as well as anticipation of punishments and triggers (see Stahl

(1996, 1999), Stahl and Haruvy (2012)). A pair of machines induces a sequence of

action profiles, which are modelled by a Markov process. The occurrence of errors

ensures that the process is ergodic, which enables us to compute the invariant distri-

bution of the action profiles for each machine pair. We derive predictions on a set of

2×2 games consisting of three payoff variations of the Prisoner’s Dilemma and Stag

Hunt, and two payoff variations of the Battle of the Sexes. In each game type, we

allow for both symmetric and asymmetric versions.3

We next conduct online experiments with a high continuation probability (specif-

ically, δ = 0.99), where subjects are paired in a fixed matching protocol to play one

of the aforementioned games with perfect monitoring and complete information. Fi-

nally, we adopt the methods from Ioannou et al. (2025) (inspired from the Winepi

algorithm of Mannila, Toivonen, and Verkamo (1997)) to mine the experimental data

for frequent patterns in each game,4 and validate them against the equilibrium game

plays and the action profiles induced by the equilibrium machine pairs. Crucially,

our validation procedure is markedly different from studies that utilize maximum

likelihood estimation to find the proportion of the population that uses a particular

strategy/machine. Here, we determine what percentage of the frequent patterns de-

tected in each game could have been generated by a specific equilibrium machine (see

Subsection 5.3 for more details).5

3Asymmetry in the payoffs may complicate the environment for the players or, under suitable
parametrizations, simplify it. The former will happen if payoff-asymmetry causes a normative con-
flict amongst such principles as efficiency and egalitarianism (Nikiforakis, Noussair, and Wilkening
(2012)). In contrast, payoff-asymmetry may simplify the environment if it makes an efficient and
egalitarian profile salient relative to the other asymmetric ones. We test here both environments.

4Ioannou, Mathevet, Romero, and Zhang (2025) show that in games with a sufficiently high
continuation probability, oftentimes participants reach a predictable way of playing the game (i.e.
a frequent pattern). Therefore, it is only natural to compare the frequent patterns extracted from
the experimental data to the induced action profiles of the predicted machines.

5A pattern, in general, cannot be identified with one single machine (see the inference problem of
McKelvey and Palfrey (2001)), but with a set of machines. Consequently, even though the pattern
can be extracted (given that the history of play is publicly observed), we can only attribute it to a
set of possible machines.
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We make four key contributions in this paper. Though we are neither the first

to conduct an experiment that utilizes a high continuation probability6 nor the first

to use asymptotic theory to derive predictions, we are the first to integrate the two

together. The close proximity of the continuation probability to 1, allows a direct com-

parison between the asymptotic predictions and the frequent patterns mined from the

experimental data. Our approach is thus holistic in the sense that it combines theoret-

ical predictions with an empirical investigation by means of a controlled experiment.

Furthermore, the high continuation probability induces a sufficiently long interaction

between the same two participants (in expectation 100 periods of game play), which

gives us insights into what happens in long repeated games (for example, whether

cooperation/coordination will be sustained).

The second contribution is that the proposed theoretical framework is versatile

enough to predict different machine pairs for variations in the payoffs within a game.

Importantly, the predicted pairs are also in line with the comparative statics drawn

from the existing literature. For example, holding everything else constant, Dal Bó

and Fréchette (2018) argue that, in the Prisoner’s Dilemma, if (i) the gain from

defection when the other player cooperates, and (ii) the loss from cooperation when

the other player defects both go down, then the frequency of cooperative plays will go

up. Though, in the first version of the Prisoner’s Dilemma, the proposed framework

does not predict cooperative plays, but defecting ones, in the second version, where

both aforementioned conditions go down relative to the first version, the framework

predicts both cooperative and defecting plays.

Our third contribution is substantive. We find that almost all of the equilibrium

game plays and action profiles induced by the equilibrium machine pairs find support

in the data. This finding is important for two reasons. First, it provides strong

evidence to support the empirical validity of the proposed theoretical framework.

Second, it allows researchers to take a step forward by identifying plausible machines

deployed by participants, which can help navigate future theoretical work towards

refinements or conditions that lead to the use of these machines.

The fourth contribution is a statistical model that allows us to determine the

games where the theoretical model performs (relatively) better. In our application,

6Very few studies exist that utilize such a high continuation probability. We are aware of one
study that utilizes a δ = 0.99 and 0.995 (Ioannou et al. (2025)), one study that utilizes a δ = 0.98
(Romero and Rosokha (2019)), and two studies that utilize a δ = 0.95 (Romero and Rosokha (2018,
2023)).
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equilibrium game plays have a point mass distribution. Standard, statistical hy-

pothesis testing cannot be used on this occasion as a single, non-compliant (to the

equilibrium predictions) play is a sufficient datapoint to provide evidence against the

theoretical prediction. We address this issue by modifying the statistical approach of

Ioannou and Makris (2019) to assess the closeness (in a sense explained in Subsection

5.4) of the empirical distribution to the theoretical one in each game.

The paper is structured as follows. We first situate the current study in the

relevant literature. In Section 3, we present the theoretical framework and a proof-of-

concept application. In Section 4, we present the games, the experimental protocol,

and the theoretical predictions. In Section 5, we first explain briefly the approach

utilized to mine the frequent patterns. We then proceed to contrast the frequent

patterns detected in the experimental data with the predicted game plays, and the

action profiles induced by the predicted machine pairs. Lastly, we provide a statistical

approach to evaluate the theoretical model proposed across our selected games. In

Section 6, we offer concluding remarks.

2 Related Literature

The paper relates and contributes to a few strands of the literature. First, the present

study adds to an extensive literature on equilibrium selection. In this strand, we can

identify five themes. In the first theme, we find the seminal notions of risk and payoff

dominance due to Harsanyi and Selten (1988). The second theme utilizes structural

models to select equilibria.7 The third theme centers on the prevailing common view

that in order to escape a prediction of equilibrium indeterminacy, the environment

needs to possess a sufficiently large degree of heterogeneity and/or of asymmetric

information (see Ioannou (2022)). Of special interest in this theme (and relevant

to our study as well) are the coordination games. The theory of Global games of

Carlsson and van Damme (1993) constitutes the most popular approach to escape

the prediction of equilibrium indeterminacy by means of deploying uncertainty about

the economic fundamentals (see also Morris and Shin (1998, 2003)).8 The fourth

7For instance, Zhang and Hofbauer (2016) use Quantal Response equilibrium as a homotopy
method for equilibrium selection to study 2×2 coordination games (see also Turocy (2005)).

8An alternative approach, the theory of Poisson games, models the number of actual players as
a Poisson random variable to capture population uncertainty in large coordination games (Makris

4



theme includes theories that rely on evolutionary approaches as a mechanism to

coordinate on certain equilibrium outcomes (e.g. Ellison (1993), Kandori, Mailath,

and Rob (1993), Cooper (1996), Binmore and Samuelson (1997, 1999)). Finally, the

fifth theme in this strand, and the one more closely related to this study, includes

theoretical contributions that rely on some boundedly rational learning process to

select an equilibrium outcome (e.g. Ellison (1997), Jéhiel (2001)).

Our paper also pertains to the strand that studies the set of Nash equilibrium

payoffs and the structure of the equilibria in the machine game. Constraining the

players in the infinitely-repeated game to choose machines in lieu of (repeated-game)

strategies does not alter the set of equilibrium payoffs (i.e. we obtain the same con-

clusion as that of the Folk Theorem). However, including in the ordering of players’

preferences a dislike towards the machine complexity (secondary to the payoffs) im-

proves predictability. Specifically, Abreu and Rubinstein (1988) show that, if agents’

preferences are increasing in repeated-game payoffs and decreasing in the complex-

ity of the machines employed, the set of Nash equilibrium payoffs that can occur is

dramatically reduced from the Folk Theorem result. Yet the authors indicate that

a wide variety of payoffs still remain consistent with equilibrium behavior even in

the presence of complexity costs.9 Existing literature also characterizes the structure

of the equilibria in the machine game. Abreu and Rubinstein (1988) show that in

any equilibrium of the machine game there is one-to-one correspondence between the

actions of each of the two players (see also Piccione (1992)).

A third strand that relates to this study is the recent literature investigating

the strategies experimental subjects use in infinitely-repeated games. Two general

approaches have been used to tackle with the issue of strategy inference. The first

approach involves direct observation of strategies using the strategy elicitation method

(Selten (1967)). Specifically, subjects are asked to directly design their strategy,

which is then deployed to play the game in lieu of the subject (e.g. Romero and

Rosokha (2018, 2019, 2023), Dal Bó and Fréchette (2019)). The second approach

(2008)).
9Abreu and Rubinstein (1988) define the complexity of a machine as the number of states of the

minimal automaton implementing it, while Banks and Sundaram (1990) argue that the traditional
number-of-states measure neglects some essential features, such as informational requirements at a
state. They propose instead a criterion of complexity that takes into account both the size (number
of states) and transitional structure of a machine. Under this proposition, they prove that the
resulting Nash equilibria of the machine game are now trivial: the machines recommend actions in
every period that are invariably stage-game Nash equilibria.
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involves indirect inference of strategies from the observed realization of behavior (the

so-called ‘direct-response’ method). The most common method of indirect inference

is to use a finite mixture model to estimate the proportion of the population that

uses a particular strategy (e.g. Dal Bó and Fréchette (2011), Fudenberg, Rand, and

Dreber (2012), Vespa (2020)).10

The disadvantage of the indirect-inference approach is that, at the estimation

stage, the researcher has to specify the set of all available strategies. The advan-

tage of using the indirect-inference approach over the strategy-elicitation approach is

that the researcher does not interfere nor restrict subjects’ behavior during the ex-

periment. Indeed, many researchers warned of this caveat in the strategy-elicitation

approach. Roth (1995) points out on p. 323 that “having to submit entire strategies

forces subjects to think about each information set in a different way than if they

could primarily concentrate on those information sets that arise in the course of the

game.” Rand, Greene, and Nowak (2012) and Rand et al. (2014) corroborate Roth’s

point as they find evidence that making people think deliberately lowers their co-

operative behavior in the repeated Prisoner’s Dilemma and Public Goods games.11

These reasons seemed compelling enough to lead us away from the strategy-elicitation

method, and towards implementing a non-intrusive environment where subjects play

the infinitely-repeated game directly without being asked to construct strategies.

3 Theory

3.1 Preliminaries

To simplify exposition, we start with some notation. The stage game is represented

in standard strategic (normal) form. The set of players is denoted by I = {1, ..., n}.
Each player i ∈ I has an action set denoted by Ai. An action profile a = (ai, a−i)

consists of the action of player i and the actions of the other players, denoted by

10Alternatively, Engle-Warnick and Slonim (2006) determine the best-fitting set of strategies based
on a fitness function and an increasing cost for larger sets of strategies.

11Brandts and Charness (2011)) survey twenty-nine papers to investigate similarities and differ-
ences in the outcomes of the direct-response method versus the strategy-elicitation method. The
authors find no difference in sixteen papers, find differences in four papers, and find mixed evidence
in nine papers.
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a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ A−i. In addition, each player i has a real-valued,

stage-game, payoff function gi : A → R, which maps every action profile a ∈ A into

a payoff for i, where A denotes the cartesian product of the action spaces Ai, written

as A ≡
I
×
i=1

Ai. In an infinitely-repeated game with perfect monitoring, the stage game

in each time period t = 0, 1, ... is played with the action profile chosen in period t

publicly observed at the end of that period. The history of play at time t is denoted

by ht = (a0, ..., at−1) ∈ At where ar = (ar1, ..., a
r
n) denotes the actions taken in period

r. The set of histories is given by

H =
∞⋃
t=0

At,

where we define the initial history to the null set A0 = {∅}. A strategy si ∈ Si

for player i is a function si : H → Ai, where the strategy space of i consists of Ki

discrete strategies; that is, Si = {s1i , s2i , ..., sKi
i }. Furthermore, we denote a strategy

combination of the n players except i by s−i = (s1, ..., si−1, si+1, ..., sn). The set of

joint-strategy profiles is denoted by S = S1 × · · · × Sn. Each player i has a payoff

function πt
i : S → R, which represents the average payoff per period when the joint-

strategy profile is played for t periods.

3.2 Moore Machines and Errors

The number of possible (repeated-game) strategies in a repeated game increases ex-

ponentially with the number of periods, making it impractical to deal with such

a large number of strategies. We thus restrict the strategy space drastically by

considering only strategies defined by finite-state automata called Moore machines

(Moore (1956)). A Moore machine for player i, Mi, in an infinitely-repeated game

G = (I,{Si}i∈I , {πi}i∈I) is a four-tuple (Qi, q0i , fi, τi) where Qi is a finite set of

internal states of which q0i is specified to be the initial state, fi : Qi → Ai is an

output function that assigns an action to every state, and τi : Qi ×A−i → Qi is the

transition function that assigns a state to every state and other players’ actions. This

formalization for the transition function fits the natural description of a strategy as

i’s plan of action in all possible circumstances that are consistent with i’s plans.12

12In contrast, the notion of a game-theoretic strategy for i requires the specification of an action
for every possible history including those that are inconsistent with i’s plan of action. To formulate
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Importantly, we assume that players’ behaviors are limited by the constraints

of their inherent nature.13 Such limitations have been treated by researchers under

the notion of ‘errors.’ Consequently, we assume that the machines are subjected to

some small likelihood of committing errors in the implementation of their actions á

la Selten’s trembling hand.14 Formally, a player i’s machine in an infinitely-repeated

game G commits an implementation error with probability ϵ when, for any given

state q, the output function returns the action fi(q) with probability 1− ϵ and draws

another action “fi(q)” where fi(q) ̸= “fi(q)” otherwise.15

3.3 Equilibrium Machines

We study the players’ behavior in the infinitely-repeated game G by analyzing the

machine game where each player chooses and commits to a machine to play the

game. In the following definition, we merely assume that each player’s preferences

are positively sensitive to the payoffs.

Definition 1. A machine game of the infinitely-repeated game G is a strate-

gic game GM = (I,{Mi}i∈I}, {Pi}i∈I) in which Mi is the set of all available ma-

chines of player i in the infinitely-repeated game, and Pi is the expected payoff of

player i when the machines induce the sequence (at(Mi,M−i))
∞
t=1 of action profiles

and (qt(Mi,M−i))
∞
t=1 of states defined as follows: for i and t ≥ 1, we have

• q1i (Mi,M−i) = q0i

• ati(Mi,M−i) = fi(q
t
i(Mi,M−i))

• qt+1
i (Mi,M−i) = τi(q

t
i(Mi,M−i), a

t
−i(Mi,M−i)).

The machine game is a strategic one; to incorporate Subgame Perfect equilibrium

considerations, the solution concept needs to be modified to require that after every

the game-theoretic notion of a strategy, one would have to construct the transition function so that
τi : Qi ×A → Qi instead of τi : Qi ×A−i → Qi.

13Conventional game theory rests on the foundation of hyper-rational agents with full ability to
select the most-preferred action. Yet such an assumption is usually defended on its methodological
merits rather than its empirical validity.

14For an experimental investigation of repeated Prisoner’s Dilemma games in the presence of
implementation errors see Fudenberg, Rand, and Dreber (2012).

15Similar approaches have been used in Kraines and Kraines (2000), Brandt and Sigmund (2005)
and Ioannou (2014).
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history in the repeated game, the machines constitute an equilibrium of the machine

game.16 We next state formally our solution concept.

Definition 2. Machines (M∗
i ,M

∗
−i) constitute a Nash equilibrium in the machine

game GM of the infinitely-repeated game G, if for every player i,

Pi(M
∗
i ,M

∗
−i) ≥ Pi(M

′
i ,M

∗
−i)

for every machine M ′
i of player i.

17

3.4 A Proof-of-Concept Application

We proceed next to operationalize the aforementioned framework using the Markov

process. To simplify exposition, let us consider a 2×2 repeated game.18 In addition,

let us constrain further the set of Moore machines by imposing a bound of no more

than two states in a machine, which gives us a total of 26 machines (see Figure 1). We

denote the set of 26 machines by M, omitting the subscript i given that the players’

strategy sets are the same by assumption. Restricting our attention to the proposed

strategy subspace is appropriate for two reasons. First, the specific subspace accom-

modates elements of bounded rationality as envisioned by Simon (1947). Indeed, in

this context, bounded rationality suggests that a player may not consider all feasible

strategies but limit herself to simpler ones.19 Second, the proposed subspace is still

rich enough to allow for sophisticated strategic behavior, which incorporates not only

16As Osborne and Rubinstein (1994) point out, such a modification implies that the play of the
machines does not have an introductory phase − only a cycling one. In the application in Subsection
3.4, where we apply the Markov process, the expected payoffs are independent of the initial condition,
hence our notion of equilibrium can be extended to Subgame Perfection.

17In the application in Subsection 3.4, we restrict attention to pure equilibrium machine pairs in
line with our theoretical framework, where a player chooses (once) in the beginning and commits
thereafter to a machine; looking at mixed equilibrium machine pairs is beyond the scope of this
exposition.

18An application of the Markov process on repeated, 2-player games with arbitrary actions can
be found in Stewart, Parsons, and Plotkin (2016). An application of the Markov framework on
repeated, n-player games with two actions can be found in Hauert and Schuster (1997), Hilbe et al.
(2014), and Hilbe et al. (2017).

19A more complex machine is more likely to break down. It is also more difficult to learn and
implement. For these reasons, a player values simpler machines. Kuzmics, Palfrey, and Rogers
(2014) provide theoretical and empirical evidence to suggest that simplicity is a natural criterion for
strategy choice.
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Figure 1: One-State and Two-State Moore Machines (M)
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punishments and triggers, but also anticipation of punishments and triggers. Let us

also point out that the choice of a cap at two states finds support in the literature in

evolutionary games and learning models (e.g. Hanaki et al. (2005), Imhof, Fudenberg,

and Nowak (2007), Ioannou and Romero (2014) and Dal Bó and Fréchette (2018)).

In the 2×2 repeated game, each period of play leads to an action profile j (j =

1, 2, 3, 4): (A,A), (A,B), (B,A), and (B,B). Note that the first position denotes the

action taken by player i and the second position that of player −i. The transition

rules are labeled by quadruples (σ1, σ2, σ3, σ4) of zeros and ones, where σj is 1 if the

(transition) rule plays A, and 0 if the rule plays B after profile j is realized. Thus,

there are 24 = 16 possible transition rules.20 Furthermore, as highlighted earlier, we

will assume that the machines are error-prone; let a machine have transition rule

p = (p1, p2, p3, p4) where pj is strictly positive denoting the probability of choosing A

after the corresponding profile of the previous period. The space of all such rules is

the four-dimensional unit cube; the corners are just the degenerate transition rules.

A transition rule p = (p1, p2, p3, p4) that is matched against a transition rule

q = (q1, q2, q3, q4) yields a Markov process where the transitions between the four

possible states21 are given by the matrix
p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)

p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)

p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)

p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

 .

If p and q are in the interior of the strategy cube, then all entries of this stochastic

matrix are strictly positive; that is, the presence of errors ensures that the chain is er-

godic. Consequently, there exists a unique stationary distribution ϕp/q = (ϕ1, ϕ2, ϕ3, ϕ4)

such that p
(n)
j is the probability of being in state j in the nth period, and converges to

ϕj for n → ∞ (j = 1, 2, 3, 4). The components ϕj are strictly positive and sum up to

1. The stochastic vector ϕ is a left eigenvector of the matrix above for the eigenvalue

1. It follows that the expected payoff for player i using p against player −i using q

is given by

20In addition, there are two possible initial conditions for a total of 32 transition rules. However,
as indicated shortly, the unique stationary distribution and the expected payoffs are independent of
the initial conditions.

21To be consistent with the conventional notation in Markov chains, the word ‘profile’ is replaced
with the word ‘state.’
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Pi(p,q) = gi(A,A)ϕ1 + gi(A,B)ϕ2 + gi(B,A)ϕ3 + gi(B,B)ϕ4, (1)

where the coefficients are the stage-game payoffs. Notice that ϕj and the expected

payoffs are independent of the initial conditions.

The payoff obtained by a machine using transition rule p against a machine using

transition rule q can be computed via (1). Computing the ergodic distribution of

the realized actions for each machine pair enables us to obtain the 16×16 payoff

matrix. However, if one wants to compute the limit value of the payoffs for ϵ =

0, the aforementioned argument cannot be applied as the transition matrix is no

longer irreducible hence the stationary distribution ϕ is no longer uniquely defined.

Nevertheless, using the approach in Nowak, Sigmund, and El-Sedy (1995), one can

show, without loss of generality, that when a machine using a transition rule p is

paired with a machine using transition rule q, the transitions between their stationary

regimes occur with a frequency proportional to ϵ; hence, do not affect the expected

payoff as ϵ → 0. This allows us to also compute the 16×16 payoff matrix in the case

of ϵ → 0. In the Supplementary Appendix, we provide (for expositional purposes)

the payoff matrix for ‘Always-Defect’ (ALLD), ‘Tit-For-Tat’ (TFT), ‘Grim-Trigger’

(GT) and ‘Win-Stay, Lose-Shift’ (WSLS) in the presence of a small implementation

error level affecting the interaction. We also provide the 16×16 payoff matrix in the

case of ϵ → 0.

3.4.1 Moore Machines, Transition Rules and β-Machines

Let us conclude this section by clarifying the differences across some key components

of our framework. In Subsection 3.4, we indicated that there are 24 = 16 transi-

tion rules. Yet in Figure 1, we display 26 (one-state and two-state) Moore machines.

This discrepancy between transition rules and machines is due to the inclusion in

the machine definition of the initial state q0i . However, recall further that the invari-

ant distribution, and thereby the expected payoffs in the 16×16 payoff matrix, are

independent of the initial conditions. This independence from the initial conditions

makes the initial state in the formalization of a Moore machine redundant.

In this context, we introduce the notion of a behavioral machine22 (henceforth, for

brevity, referred to as β-machine). Specifically, a β-machine is a three-tuple (Qi, fi,

22Ioannou and Romero (2014) alternatively refer to them as rules of behavior.
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τi) where Qi, fi and τi are defined as before. With this definition in place, we can

identify 15 β-machines. In Figure 2, we provide the 15 β-machines. Each of the 15 β-

machines is matched with a transition rule.23 In addition, a β-machine (or transition

rule) corresponds to either one or two Moore machines in the sense that the latter

implement the same underlying behavior as the β-machine. In Figure 2, we also match

the β-machines with the equivalent Moore machine(s) where the numerical labels of

Moore machines are taken from Figure 1. For the reader’s convenience, we also include

either the commonly-used name or a brief description of the respective behavior.

Finally, notice that the 15 β-machines cover the entire M subspace. Henceforth, we

will only be referring to β-machines.

4 Experimental Design & Theoretical Predictions

4.1 Stage Games

Our choice of games is not coincidental. We targeted the Prisoner’s Dilemma, Stag

Hunt and Battle of the Sexes, where it is well documented that variations in their

payoffs may influence behavior. Furthermore, these stage games cover a wide variety

of strategic situations, characterized by strategic dominance, Pareto dominance and

coordination motives.

The Prisoner’s Dilemma (PD) has become the workhorse to investigate social

interactions. The PD is characterized by the relation T > R > P > S where the

letters arise from the generic payoff matrix in Table 1. Furthermore, it is often

required that 2R > T + S so that alternations between cooperation and defection

are not more profitable than joint cooperation. Standard equilibrium theory predicts

that, in the single-shot PD game, the Pareto-dominated action profile of mutual

defection will emerge. Adding more periods to the game does little to improve the

theoretical outlook as long as the last period is common knowledge. If the last period

is not known, subject to the assumptions of the Folk Theorem, nearly any path of

play can be supported in equilibrium. Yet laboratory behavior is susceptible to both

23Transition rule (S1100) cannot be captured by a β-machine. This rule chooses A forever if action
profiles (A,A) or (A,B) occur, and chooses B forever if (B,A) or (B,B) occur. Yet it cannot be
depicted by a β-machine because its two (absorbing) states are disconnected.
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Figure 2: Equivalencies
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Table 1: Generic Prisoner’s Dilemma Payoff Matrix

Cooperate Defect

Cooperate R S

Defect T P

Notes: Players either Cooperate (C) or Defect (D). The payoffs are those of the row player. If both

players choose ‘C,’ then each earns the Reward payoff (R). If both players choose ‘D,’ then each

earns the Punishment payoff (P). If one player chooses ‘D’ and the other one chooses ‘C,’ then the

former player earns the Temptation payoff (T) and the latter earns the Sucker’s payoff (S).

the relative payoffs and the horizon of the game (see Embrey, Fréchette, and Yuksel

(2018), Dal Bó and Fréchette (2018)).24

The Stag Hunt (SH) is a coordination game, which can be seen as a parable

of social situations in which coordination can be pursued either to increase mutual

rewards (which requires necessarily collaboration) or to earn lower rewards (which

does not require collaboration). Using the letters from the generic PD matrix for

convenience, the SH is characterized by the relation T < R > P > S. In SH games,

typically, there is one mixed Nash equilibrium and two pure-strategy Nash equilibria

that are Pareto-ranked: a payoff-dominant (or Pareto efficient) equilibrium and a risk-

dominant equilibrium. Battalio, Samuelson, and Van Huyck (2001) indicate that, in

experimental SH games, the sensitivity of subjects to the history of the other player’s

play is greater in games with a larger optimization premium. Thus, the risk-dominant

equilibrium is more likely to emerge the higher the optimization premium is.

The Battle of the Sexes (BoS) is another coordination game. It is characterized

by the relation T > S > R = P . Similar to SH, there is one mixed Nash equilibrium

and two pure-strategy Nash equilibria. However, in contrast to SH, the two pure-

strategy Nash equilibria in this game create a tension between the two players due to

24Dal Bó and Fréchette (2018) in their meta-analysis of PD games, reduce the number of payoff
parameters to g (the gain from defection when the other player cooperates) and l (the loss from
cooperation when the other player defects) to conclude that cooperation is decreasing in both g and
l. Blonski, Ockenfels, and Spagnolo (2011) propose an axiomatic approach for equilibrium selection
that revolves around providing conditions for when cooperation is more likely. Specifically, they
characterize a selection criterion that results in a critical discount factor δ∗ = T−S−R+P

T−S , which
is strictly greater than the minimum discount factor δ required to support mutual cooperation.
Blonski, Ockenfels, and Spagnolo (2011) show that when ∆δ and ∆δ∗ change in opposite directions,
δ∗ fares much better as a tool for predicting changes in the frequency of cooperation than the
standard discount factor.
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opposing preferences: each player earns more in a different equilibrium than the other.

Nevertheless, repeated interactions allow players to reconcile their conflicting interests

intertemporally. Specifically, theoretical analysis has shown that players can achieve

the efficient outcome using an alternating strategy (see Bhaskar (2000), Kuzmics,

Palfrey, and Rogers (2014)), which also finds compelling experimental support (e.g.

Cason, Lau, and Mui (2013), Ioannou and Romero (2014), Arifovic and Ledyard

(2018)).

Figure 3: Stage Games
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The payoff matrices of the PD games are indicated in the top row of Figure 3.

The cooperative action is denoted with the letter ‘A’ and the action of defection
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is denoted with the letter ‘B.’ Each player’s dominant action is to play ‘B.’25 The

payoff matrices of the SH games are indicated in the middle row. ‘A’ is a strict best

response to any mixture that attaches a probability greater than 0.8 to ‘A,’ while ‘B’

is a strict best-response to any mixture attaching a lower probability to ‘A.’ In this

game, there are two pure-strategy Nash equilibria {(A,A), (B,B)} and a mixed Nash

equilibrium in which ‘A’ is played with probability 0.8.26 Action profile (A,A) is the

payoff-dominant Nash equilibrium and (B,B) is the risk-dominant Nash equilibrium.27

Finally, the payoff matrices of the BoS games, are indicated in the bottom row. The

two pure-strategy Nash equilibria are {(A,B),(B,A)}. Each player receives a higher

payoff in the equilibrium in which she plays ‘B.’ Alternating between the two pure-

strategy Nash equilibria leads to the only Pareto optimal outcome. In the mixed

Nash equilibrium, ‘A’ is played with probability 3/8 in the symmetric BoS (V1) game

and, in the asymmetric BoS (V2) game, ‘A’ is played with probability 1/3 for the row

player and with probability 6/23 for the column player.

Our intention is to provide a tight test of the theoretical framework proposed. We

thus include an asymmetric variation in each class of games alongside the symmetric

ones. The symmetric variations of the PD games are taken from Dal Bó and Fréchette

(2011), and the symmetric ones of the SH games are taken from Battalio, Samuelson,

and Van Huyck (2001). The asymmetric matrix in the PD and SH combines the two

respective, symmetric variations. Both the symmetric variation and the asymmetric

one of the BoS games are taken from Arifovic and Ledyard (2018).

The asymmetry in the payoffs of the PD game causes tension amongst two norma-

tive principles: efficiency and egalitarianism. This tension complicates the environ-

25The minimum discount factor required to support mutual cooperation δ in a Subgame Perfect
Equilibrium is 0.72 in PD (V1) and 0.083 in PD (V2). A similar conclusion (i.e. more cooperation
in PD (V2)) is also drawn using the criterion of Blonski, Ockenfels, and Spagnolo (2011): the δ∗ is
31
38 in PD (V1) and 15

38 in PD (V2).
26Dal Bó, Fréchette, and Kim (2021) in their meta-analysis of SH, reduce the number of payoff

parameters to Λ (the loss arising from an unilateral deviation from the efficient equilibrium) and λ
(the loss arising from an unilateral deviation from the inefficient equilibrium). Dal Bó, Fréchette, and
Kim (2021) find that as the size of the basin of attraction of ‘A’ increases and/or the optimization
premium decreases, subjects become more likely to choose the payoff-dominant equilibrium. The
basin of attraction is the maximum probability of the other player choosing ‘B’ that still makes ‘A’
a best response. Given these parameters, the basin of attraction of ‘A’ is equal to Λ

Λ+λ and the
optimization premium is equal to Λ + λ. Thus, in all our SH games, the basin of attraction of ‘A’
is 0.2, while in the SH (V1) game the optimization premium is 10, and in the SH (V2) game the
optimization premium is 15

33 .
27(A,A) is a risk-dominant profile if its basin of attraction is greater than 0.5, which is not the

case in our selection of SH games.
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ment considerably as players need to recognize and conform to the preferred principle

of the other player. In contrast, in the symmetric PD variations, there exists no

tension between efficiency and egalitarianism as the two are perfectly aligned. In

SH, the specific asymmetric variation simplifies the environment as the efficient and

payoff-dominant equilibrium is also the egalitarian one. As a result, (A,A) is salient

relative to the other asymmetric profiles. Finally, the asymmetry in the payoffs in the

BoS game inhibits egalitarianism even if players alternate on the pure-strategy Nash

equilibria.28 Nevertheless, in the symmetric BoS game, alternating between the two

equilibria does lead to the only Pareto optimal and egalitarian outcome.

4.2 Experiments

The experiments were conducted on Amazon’s Mechanical Turk (henceforth, referred

to as MTurk for brevity). Our initial intention was to conduct the experiments in

a standard laboratory setting with university students. However, as it was only rel-

atively recently that university laboratories had opened after the COVID lockdown

measures, we felt that it was quite likely that the subject pool coming to the lab-

oratory would be biased. Thus, we chose instead to conduct the experiments on

MTurk.

Prior to running the actual experiments, we imposed a restriction that only US-

based individuals could sign up for an experimental session. This requirement was

essential to reduce the likelihood of dealing with individuals that were not proficient in

English − the language of the experimental instructions. At the portal, participants

were first asked to provide informed consent. Then, they had to go through the

experimental instructions and complete a quiz to ensure their understanding of the

game. The instructions emphasized that in order to proceed to the game-play stage,

28In light of recent evidence documenting that egalitarianism and efficiency are strong attractors
of behavior (see Ioannou et al. (2025)), one may wonder how many machine states are needed to
attain an allocation that is both efficient and egalitarian in the asymmetric BoS game and, thereby,
how restrictive is the choice of only one-state and two-state machines in the machine space. To
attain an efficient and egalitarian allocation, a pair of machines would need to induce the action
profiles {(A,B), (A,B), (A,B), (A,B), (A,B), (B,A), (B,A), (B,A), (B,A)}. Thus, a minimum of
five states would be needed. The action-convergence criterion utilized allowed us to look at all
possible patterns of reasonable length, including patterns that induce the above action profiles (for
more details on the criterion, see Subsection 5.1). We did not locate a pattern longer than a length
of two, which corroborates the findings in Arifovic and Ledyard (2018). Therefore, our choice to put
a cap at two states was non-binding.
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participants had to answer all quiz questions correctly.29 Upon successful completion

of the quiz, participants entered the waiting room where the matching took place.

Once two participants were successfully matched, a game from Figure 3 was randomly

assigned to them and the pair started their repeated interaction. The values in the

payoff matrices denote Experimental Currency Units (ECUs). Participants played

one infinitely-repeated game with perfect monitoring and complete information. In

the experiment, the two actions of the stage games ‘A’ and ‘B’ (in Figure 3) were

labeled as ‘X’ and ‘Y.’ Furthermore, ‘X’ and ‘Y’ were randomized so that, for instance,

(X,X) was the Nash equilibrium in some PDs and (Y, Y ) was the Nash equilibrium

in others. Each player’s payoff in the repeated game consisted of the sum of the

ECUs accumulated from each period. The exchange rate, 500 ECUs for $1, was

common knowledge. Initially, for their participation in the experiment, they received a

payment of 2,500 ECUs (i.e. $5). Upon completion of the repeated game, participants

were asked to provide some demographic information. The experimental instructions

and the quiz questions are provided in the Supplementary Appendix.

We used a high continuation probability (i.e. δ = 0.99) to induce long interactions

(in expectation 100 periods) between the same two participants. The termination rule

was common knowledge. The actual draw for the length of the repeated games was

done ex ante. The drawn length of the repeated games was 96. We fixed the length

to make consistent comparisons across games without invoking variability in learning

and/or fatigue, which could confound our results.

Participants were allowed to participate in only one session. The sessions lasted

around 45 minutes. Average earnings per participant were $9.80. In total, there were

516 participants that formed 258 datapoints across the 8 games. Table 2 displays the

number of participants who played in each game.

4.3 Experimental Implementation Vis-a-Vis Theoretical Frame-

work

The theoretical framework assumes that players commit from the beginning of the

game to one-state or two-state machines, and locates the Nash equilibrium pairs

based on asymptotic-payoff calculations. Strategic behavior is inherent in the Nash

29Participants were told that repeated failure to answer the questions correctly would result in
their dismissal.
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Table 2: Characteristics of the Sessions

# of

Game Acronym Participants

Prisoner’s Dilemma (V1) PD1 64

Prisoner’s Dilemma (V2) PD2 68

Prisoner’s Dilemma (V3) APD3 70

Stag Hunt (V1) SH1 62

Stag Hunt (V2) SH2 64

Stag Hunt (V3) ASH3 66

Battle of the Sexes (V1) BoS1 60

Battle of the Sexes (V2) ABoS2 62

Notes: The Table displays the number of participants who played the corresponding game. A

datapoint consists of a pair of participants (hence the number of datapoints is one half of the above

numbers).

equilbrium solution concepts. Underlying strategic behavior are the assumptions of

rationality and higher-order rationality.30 In the context of the experimental setting,

these assumptions seem quite stringent and far too unrealistic to be satisfied by

subjects (at least) from the very beginning of the infinitely-repeated game. However,

with sufficient experience, subjects are more likely to exhibit strategic behavior in the

game in line with the underlying rationality assumptions. In particular, once subjects

accumulate enough experience, they can better understand the dynamics of the game

(e.g. the long horizon, the implications of their actions, best responding to beliefs,

the strategy set) and can thus foresee the outcome of their game play based on their

own plan of action and the anticipated plan of action of the other player.

The mapping between the theoretical framework and the experimental implemen-

tation begins only after subjects accumulated sufficient experience with the infinitely-

repeated game. At that point, ‘strategic’ subjects based on the knowledge accrued

and introspection decide on how to play the game; that is, lock their plan of action

30A player is rational if she best-responds to her beliefs. If she believes others are rational, and if
she believes others believe others are rational and so on and so forth, then she satisfies higher-order
rationality.
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for the remainder of the game. Therefore, we (implicitly) partition the phase of accu-

mulating experience and the phase where subjects commit/lock to a particular game

plan, and focus exclusively on the last phase which parallels the theoretical setting.

Our approach finds support in many studies. Consider first the study of Romero

and Rosokha (2018), where the authors allow subjects to construct strategies by de-

veloping a set of rules (i.e. ‘if this, then that’ statements). Romero and Rosokha

divide the infinitely-repeated game into two stages: the ‘free’ stage and the ‘lock’

stage. In the free stage, subjects are able to edit their rule set as the game progresses

and their understanding of the game’s dynamics improves, whereas in the lock stage,

subjects’ rule sets are locked for the remainder of the game. Along similar lines,

studies in the literature that model learning in repeated games, separate the so-called

‘pre-experimental’ phase from the ‘experimental’ one (see e.g. Hanaki, Sethi, Erev,

and Peterhansl (2005), Ioannou and Romero (2014)); that is, partition the inexperi-

enced, initial behavior of players in the infinitely-repeated game and the experienced

behavior after accruing knowledge of the game’s dynamics. The lock stage in Romero

and Rosokha (2018) and the experimental phase in the learning literature parallel our

last phase where subjects commit to a particular game plan.

4.4 Theoretical Predictions

In Figures 4-6, we display the 15×15 possible β-machine combinations in the PD,

SH and BoS games, respectively. The legend of the respective figures indicates the

expected payoff in equilibrium of the row and column players across all variations.

In the Supplementary Appendix, we contrast the predicted payoffs in the proposed

framework with the theoretical payoff predictions of the Folk Theorem.

Prisoner’s Dilemma Games

In Figure 4, we display the equilibrium pairs and (expected) payoffs across the three

variations. Noticeably, the predictions in all relevant spaces (i.e. payoffs, machine

pairs) are quite sharp.

In PD1, we observe four equilibrium pairs. The expected payoff in all combinations

is 25 for both the row and column players as the pairs induce plays of (B,B) (i.e.

defecting plays). In PD2, we retain the four equilibrium pairs from PD1 that play the
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Figure 4: Predicted Machine Pairs in the Prisoner’s Dilemma Games

         (a) PD1            (b) PD2

        (c) APD3

Notes: The Figure provides the predicted pairs across the three payoff variations of the Prisoner’s

Dilemma.
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(B,B) action profile. However, given that, in this variation, the gain from defection

when the other player cooperates is very small, three equilibrium machines inducing

plays of (A,A) (i.e. cooperative plays) resulting in an expected payoff of 48 for both

players also arise. Thus, in this PD variation, we should expect both cooperative and

defecting plays. Moving into an asymmetric environment that combines the payoffs

from the previous two PD variations is detrimental to the possibility of cooperative

plays. In APD3, we observe that the predictions with respect to equilibrium payoffs

and pairs are identical to those in Figure 4(a).

We formulate next our two PD predictions.

Prediction 1. In PD1 and APD3, plays within a game consist of (B,B).

Prediction 2. In PD2, plays within a game consist of either (A,A) or (B,B).

Stag Hunt Games

In Figure 5, we provide the equilibrium pairs and payoffs in the SH games. In sharp

contrast to the PD games, in the SH games, machine predictability is compromised.

In all SH games, we observe three classes of equilibrium pairs. In the first class,

we find machines that play (A,A) and thus achieve the Pareto efficient payoff of 45.

Furthermore, in all three variations, the set of machines in this first class is identical.

In the second class, we find equilibrium pairs that play the risk-dominant action

profile (B,B). Finally, in the third class, we find machines that alternate between

(A,A) and (B,B). Importantly, the volume of machines included in the latter two

classes differs from variation to variation.

In SH1, we observe a very large number of equilibrium pairs. The first class

consists of nineteen equilibrium pairs that settle on (A,A). In the second class,

we find equilibrium pairs ‘Quick A, then B,’ ‘Grim-Trigger’ and others that settle

on the risk-dominant payoff of 40. Finally, in the third class, equilibrium machines

alternate between the payoff-dominant and risk-dominant equilibrium, thus securing

an expected payoff of 42.5 for each player.

In SH2, predictions are sharper relative to SH1. Though the first class of equi-

librium pairs is identical, in the second class that includes machines coordinating at

the risk-dominant equilibrium, we find only one β-machine: ‘Quick A, then B.’ Fur-

thermore, in the third class, we have two β-machines: ‘Alternations’ and ‘BA or A
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Figure 5: Predicted Machine Pairs in the Stag Hunt Games

        (a) SH1               (b) SH2

         (c) ASH3

Notes: The Figure provides the predicted pairs across the three payoff variations of Stag Hunt.
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Once,’ which produce the three orange triangles in the figure.

In ASH3, predictability is not as sharp as that in SH2. The first class is again

identical to the other two variations, but the second class is different from both. In

addition to ‘Quick A, then B’ which is an equilibrium choice for both row and column

players, we also have another two β-machines that can be utilized by the column

player to form an equilibrium pair when matched with the row player’s ‘Quick A,

then B:’ ‘BB or A Once’ and ‘Grim-Trigger.’ Finally, in the third class, in addition to

the equilibrium pairs in SH2, we have one more equilibrium pair: ‘Alternations’ for

the row player and ‘AB or B Once’ for the column player. The asymmetric expected

payoffs are 42.5 and 28.5 for the row player and column player, respectively.

In the SH games, we formulate one prediction.

Prediction 3. In all three SH variations, plays within a game consist of either (A,A)

or (B,B) or alternations between (A,A) and (B,B).

Battle of the Sexes Games

In Figure 6, we provide the equilibrium pairs and payoffs in the two variations of the

BoS games. Given that this is another coordination game, similar to the SH games,

machine predictability is compromised. This is particularly true in BoS1 where all

machines are equilibrium predictions. Machine predictability is improved in ABoS2

but only slightly. Similar to the SH games, there exist three classes of equilibrium

pairs. In the first class, we find machines that coordinate on the row player’s not-

preferred Nash equilibrium (i.e. (A,B)), whereas in the second class, we find machines

that coordinate on the row player’s preferred equilibrium (i.e. (B,A)). In the third

class, we find machines that alternate between the two pure-strategy Nash equilibria

of the stage game thus achieving Pareto efficient payoffs. The machines in the second

and third classes are identical across the two variations.

In BoS1, in the first class, there are many equilibrium machines resulting in payoffs

(9, 15). In the second class, we find, for example, row player’s machines ‘Quick A,

then B,’ ‘AA Triggers B’ and ‘Grim-Trigger’ that are matched with column player’s

machine ‘Tat-for-Tit.’ The payoffs in this class are (15, 9). It is important to note

that given that the payoff matrix is symmetric, machines in the first two classes are
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Figure 6: Predicted Machine Pairs in the Battle of the Sexes Games

        (a) BoS1             (b) ABoS2

Notes: The Figure provides the predicted pairs across the two payoff variations of the Battle of the

Sexes.

interchangeable.31 In the third class, we find ‘Alternations,’ ‘BB or A Once,’ ‘Tit-

For-Tat’ and others that result in alternations between the two pure-strategy Nash

equilibria of the stage game. In this third class, the payoff of each player is 12.

In ABoS2, the machines in the first class constitute a proper subset of those in

the first class of the symmetric variation. The payoffs in this first class are (9, 17).

The machines in ABoS2 in the second and third classes are identical to those in the

symmetric variation. The payoffs in the second class are (20, 10) and, in the third

31In BoS1, we forewent putting all thirty-two points in the same color to illustrate that the red
squares (i.e. (B,A)) in BoS1 are retained in ABoS2.
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class, the payoff of the row player is 14.5 and the payoff of the column player is 13.5.

The last prediction pertains to the BoS games.

Prediction 4. In the two BoS variations, plays within a game consist of either (A,B)

(i.e. the row player’s not-preferred Nash equilibrium) or (B,A) (i.e. the row player’s

preferred Nash equilibrium) or alternations between (A,B) and (B,A).

5 Findings

We first extract frequent patterns from our dataset using the action-convergence cri-

terion from Ioannou et al. (2025). We then contrast the frequent patterns mined with

the predicted game plays and the action profiles induced by the predicted machine

pairs. Finally, we provide a statistical procedure to evaluate the theoretical model

proposed across our games.

5.1 Frequent Pattern Mining

Recently, Ioannou et al. (2025) documented that in games with long interactions

between the same participants, oftentimes participants reach a predictable way of

playing the game. The authors propose an action-convergence criterion to extract

frequent patterns.32 Following their approach, a pattern p is said to be (1 − ϕ)-

frequent over interval T , if p minimizes the frequency of errors while allowing at most

a frequency ϕ of errors over T . Analogously, we say that a sequence (1−ϕ)-converges

to p (or is (1− ϕ)-convergent) over T , if it admits a (1− ϕ)-frequent pattern over T .

Otherwise, the sequence is (1− ϕ)-divergent. Similar to Ioannou et al. (2025), here,

we also consider the last twenty periods of game play and allow a maximum of two

errors within the specified interval; that is, ϕ = 2
20

= 0.1.33

The results are displayed in Table 3. Overall, we observe that there are 193 pairs

(sequences of game play) that (0.9)-converged (henceforth, for brevity, we omit (1−ϕ)-

which is always the same) to a pattern out of a possible 258 pairs; this corresponds

32The interested reader should refer to the paper for the technical details.
33In the Supplementary Appendix, we include robustness checks on both the number of errors (1,

2 and 3) and intervals of game-play periods (20 and 25 periods), which confirm the insensitivity of
the results to these reasonable choices of errors and period intervals.
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Table 3: Frequent Patterns Mined

PD1 PD2 APD3 SH1 SH2 ASH3 BoS1 ABoS2

Data Points 32 34 35 31 32 33 30 31

Convergent 24 28 22 25 29 26 20 19

A

A
3 24 3 16 26 22

B

B
21 4 19 9 3 4

A

B

B

A

A

B

B

A

7† 3

6

13 10

Divergent 8 6 13 6 3 7 10 12

Equal Payoffs Pareto Efficient

Notes: Table 3 displays the number of convergent sequences in the last twenty periods based on

the action-convergence criterion proposed in Ioannou et al. (2025). The limit for errors is two. The

columns indicate the stage games, whereas the rows indicate the frequent patterns mined. Frequent

patterns that are Pareto efficient are displayed with a purple background, whereas egalitarian ones

are displayed with a border. The † (next to 7) is to highlight that given that the matrix is symmetric,

pattern (A,B) and pattern (B,A) in the following row are interchangeable.

to a 75% convergence. The highest percentage of convergence is found in SH2 with

91% (29 pairs out of 32), and the lowest percentage of convergence is found in ABoS2

with 61% (19 pairs out of 31). Strikingly, the 75% overall convergence observed

corresponds to only five patterns: (A,A), (B,B), (A,B), (B,A) and ((A,B),(B,A)).

Frequent patterns (A,A) and (B,B) are detected in the PD and SH games, whereas

(A,B), (B,A) and ((A,B),(B,A)) are mined in the BoS games. Furthermore, it is

important to note that there are changes in subjects’ behavior for payoff variations
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within a given class of games. For instance, in PD1, there are 3 pairs that converged

to pattern (A,A) (i.e. the cooperative profile) and 21 pairs that converged to pattern

(B,B) (i.e. the defecting profile), whereas in PD2, there are 24 pairs that converged

to pattern (A,A) and only 4 pairs that converged to pattern (B,B). Finally, almost all

of the frequent patterns mined reflect a payoff across players that is either efficient or

egalitarian or both. This result corroborates the findings in Ioannou et al. (2025) who

document that Pareto efficiency and egalitarianism are strong attractors of behavior.

5.2 Theory vs. Behavior: Game Plays

We next compare the frequent patterns mined to the equilibrium game plays.34 Here,

we hit a big obstacle. Standard, statistical hypothesis testing cannot be used as a sin-

gle pair settling on a non-compliant (to the equilibrium predictions) play is a sufficient

datapoint to provide evidence against the theoretical prediction.35 In Subsection 5.4,

we will provide a formal statistical procedure that assesses the closeness (in a sense

explained there) of the empirical distribution to the theoretical one in each game. But

for now, we will settle to a comparison, by sheer observation, of the frequent patterns

mined in Table 3 with the theoretical predictions. We note that each prediction is

matched with the corresponding result.

Prediction 1 states that in PD1 and APD3, equilibrium plays within a game

consist of (B,B). In Table 3, we see that in these two games, with the exception of 3

pairs in each game that converged to the cooperative play (A,A), the rest converged

to the defecting play (B,B) in line with the theoretical prediction.

Result 1. In PD1 and APD3, plays within a game consist almost entirely of (B,B).

Prediction 2 pertains to the PD2 game. The theoretical framework predicts either

plays of (A,A) or (B,B). As shown in Table 3, all 28 pairs that converged to a

pattern indeed chose either (A,A) or (B,B).

Result 2. In PD2, plays within a game consist of either (A,A) or (B,B).

34We thus exclude from our analysis sequences of game play that do not correspond to frequent
patterns.

35More specifically, standard hypothesis testing cannot be used when the H0 is that plays follow
a distribution that puts all probability on just the equilibrium play(s) because a single datapoint,
which is inconsistent with the H0 (and hence carries zero probability of occurrence under the H0),
is sufficient to reject H0 for any (positive) level of significance.
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Prediction 3 states that, in all three SH variations, plays within a game consist

of (A,A) or (B,B) or alternations between (A,A) and (B,B). We see in Table 3

that there is no single pair that alternated between (A,A) and (B,B); nevertheless,

all other pairs did converge to either (A,A) or (B,B) in line with the theoretical

prediction.

Result 3. There is no evidence to support alternations between (A,A) and (B,B) in

any of the SH games. We find that in all three SH variations, plays within a game

consist of either (A,A) or (B,B).

Finally, Prediction 4 prescribes that plays within a game consist of either (A,B)

(i.e. the row player’s not-preferred Nash equilibrium) or (B,A) (i.e. the row player’s

preferred Nash equilibrium) or alternations between (A,B) and (B,A). Indeed, the

results in Table 3 show that all frequent patterns mined were consistent with the

theoretical prediction.

Result 4. In the two BoS variations, plays within a game consist of either (A,B) or

(B,A) or alternations between (A,B) and (B,A).

5.3 Theory vs. Behavior: Game Machines

We compare here the frequent patterns mined from the experimental data with the

action profiles induced by the equilibrium machines. However, such a comparison

is inhibited by a serious hurdle. A frequent pattern extracted reflects a single finite

history; therefore, there are many different machines that can generate it. For ex-

ample, pattern (A,A) can be generated by ‘Grim-Trigger’ and ‘Win-Stay, Lose-Shift’

or ‘Tit-For-Tat’ and ‘Quick B, then A.’ To overcome this problem, we use a simple

approach: we determine what percentage of the frequent patterns detected in each

game could have been generated by the specific predicted β-machine. Consequently,

we are not so much concerned with whether there are many machines that could fit

to the frequent patterns detected − this is a corollary of the approach utilized. We

are more interested whether the action profiles induced by the equilibrium machines

find support in the data. The results are displayed in Figure 7. For the reader’s

convenience, we also include a ⋆ in the bar chart to denote an equilibrium machine.

As mentioned earlier, machine predictions are quite sharp in the PD games. Re-

call that in PD1 and APD3, the predicted outcome is that pairs will end up defecting.

30



Figure 7: Frequent Patterns Mined and Equilibrium Machines
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90%
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? Equilibrium machine for both players

?r Equilibrium machine for row player

?c Equilibrium machine for column player

V1 V2 V3

Notes: The first column corresponds to the β-machine. The second column provides either the

commonly-used name or a brief description of the behavior. The remaining three columns (one for

each class of games) show with bar charts the percentage of frequent patterns that could have been

generated by the specific predicted β-machine in each game variation.
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Moreover, β-machines ‘Quick A, then B’ and ‘Grim-Trigger’ are predicted to deliver

this stream of defections. Subjects’ behavior in PD1 and APD3, predominantly set-

tled on the defecting profile. In PD1, 21 out of 24 pairs converged to a pattern of

defections (i.e. 87.5%), whereas in APD3, 19 out of 22 pairs converged to a defecting

pattern (i.e. 86%). These percentages are shown in the bar charts of ‘Quick A, then

B’ and ‘Grim-Trigger’ for PD1 and APD3, respectively. In PD2, the predicted out-

come is that pairs will either end up defecting or cooperating. In addition to the two

aforementioned β-machines (i.e. ‘Quick A, then B’ and ‘Grim-Trigger’), ‘Win-Stay,

Lose-Shift’ and ‘AA or B Once’ also constitute equilibrium ones. The latter two ma-

chines, deliver the stream of cooperative profiles. In fact, ‘Win-Stay, Lose-Shift’ and

‘AA or B Once’ capture 86% of the frequent patterns detected.

In the SH games, the predicted outcomes reflect one of the following three sce-

narios: (i) playing the payoff-dominant equilibrium (A,A), (ii) playing the risk-

dominant equilibrium (B,B), and (iii) alternating between the payoff-dominant and

risk-dominant equilibria ((A,A), (B,B)). In SH1, all β-machines are supported in

equilibrium. In SH2, the number of equilibrium machines is drastically reduced as a

few machines delivering alternations between the payoff-dominant and risk-dominant

equilibria and a few ones that settle on the risk-dominant equilibrium are no longer

supported. In ASH3, in addition to the equilibrium machines from SH2, some of

the equilibrium machines from SH1 are supported, but only for the column player.

Recall that in all SH games, pairs either ended up at the payoff-dominant equilibrium

or at the risk-dominant equilibrium. More generally, all equilibrium machines across

variations find support in the data with one exception: we do not find any support for

the predicted alternating sequence between the payoff-dominant and risk-dominant

equilibria.

In the BoS games, the predicted plays either have a player choosing their preferred

pure-strategy Nash equilibrium or the two players alternating between the two pure-

strategy Nash equilibria of the stage game. Similar to the SH games, in the BoS

games, almost all machines can be supported in equilibrium. Specifically, in BoS1,

all β-machines are supported in equilibrium, whereas in ABoS2, two β-machines are

supported in equilibrium for the row player, another two are supported in equilibrium

for the column player, while the remaining β-machines are supported in equilibrium

for both players. The results here are even more encouraging than those in the SH

games. Recall that in the two BoS variations, subjects either alternated between
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the two pure-strategy Nash equilibria or settled on one of the two pure-strategy Nash

equilibria. We observe that all equilibrium machines deliver either the former behavior

or the latter.

5.4 A Statistical Procedure to Evaluate the Theoretical Model

In Subsection 5.2, we highlighted that standard, statistical hypothesis testing cannot

be used on any of our games as even one pair of players choosing a non-compliant (to

the equilibrium predictions) play provides enough evidence to challenge the theoretical

prediction. To address this issue, we modify the statistical procedure of Ioannou and

Makris (2019) to assess the closeness (in a sense defined shortly) of the empirical

distribution to the theoretical one. The modified approach thus allows us to determine

the games where the theoretical model performs (relatively) better.

This statistical procedure assumes that pairs’ behavior may be influenced by iid

behavioral errors due to factors ‘outside the theoretical model’ (e.g. short attention

spans, random distractions). To clarify, in the context of our games, we assume

that the total number of non-compliant (to the equilibrium predictions) plays is a

random variable Z ∼ Bin(N, π), where Bin(N, π) is the binomial distribution with

size parameter N (i.e. the number of pairs),36 and ‘success probability’ π. The

key assumption here is that π ∼ Beta(a, b) for some exogenously given scalars a ≥
1, b > 1, where Beta(a, b) is the Beta distribution with parameters a, b. To investigate

whether pairs’ behavior is close to the theoretical prediction of zero non-compliant (to

the equilibrium predictions) plays and get a sense of how close it is, we will examine

whether pairs’ behavior aligns with the H0 that Z ∼ Bin(N, π) with π ∼ Beta(a, b)

for predetermined values of a and b, paying particular attention to determine the set

of values of (a, b) for which the H0 is rejected.

To conduct our statistical procedure, we will use the total number of non-compliant

plays Z as our statistic from Table 3. We therefore need to derive the probability

distribution of Z under the above H0. It is shown in Ioannou and Makris (2019) that

the probability distribution of statistic Z under the above H0 is Bin(N, a
a+b

). Denot-

ing with p(z, a
a+b

) the p-value that corresponds to the realization z of the statistic Z,

it follows that the H0 is rejected given a realization z of the statistic and a level of

36The size parameter N thus includes both the convergent as well as the divergent sequences. We
do so to obtain a higher bound on the threshold mean errors.
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significance α ∈ (0, 1) if

p(z;
a

a+ b
) :=

N∑
j=z

(
N

j

)
(

a

a+ b
)j(

b

a+ b
)N−j < α. (2)

We know that p(0; π) = 1 for all π ∈ [0, 1]. We thus have that the H0 cannot be

rejected following a realization z = 0 of the statistic for any mean error a
a+b

. Turning

to the case of a realization z > 0 of the statistic, the magnitude of the mean error

is crucial in rejecting or not the H0. However, without additional information about

pairs’ behavior, the specific choice of the mean error is arbitrary. With this in mind,

we now shift the focus to asking how large the range of mean error values must be for

a given realization z > 0 to result in a rejection of the H0. We know that p(z; π) is

increasing in π for all z ∈ {1, ..., N}, with p(z; 1) = 1 and p(z; 0) = 0. Therefore, there

is a critical threshold for the mean error below which the H0 is rejected, whereas for

all (weakly) higher mean errors the H0 is not rejected. This threshold mean, denoted

hereafter by π(z), is in (0, 1) and given implicitly by

N∑
j=z

(
N

j

)
(π(z))j(1− π(z))N−j = α. (3)

Note now that p(z, π) is decreasing in z for all π ∈ (0, 1). Consequently, we also

have that π(z) is increasing in z. It follows that the smaller the realization z > 0 of

the statistic, the closer the observed behavior is to the theoretical prediction; that is,

the lower the realization of the statistic, the ‘less often’ the above H0 will be rejected.

The threshold mean errors are displayed on Table 4. We observe that the range of

threshold mean errors is between 0.0260 and 0.3116. The lowest value is in SH2 where

the predictions are well in line with the observed behavior. The highest value is in

APD3 where three pairs played the cooperative action profile (instead of the predicted

defecting one) and thirteen pairs did not converge to a pattern. Evidently, payoff

asymmetry provides an additional layer of complexity in all game types. Overall, the

theoretical model seems to perform the best in the SH games.
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Table 4: Threshold Mean Errors

H0: Z ∼ Bin(N, π) with π ∼ Beta(a, b) for

predetermined values of a ≥ 1, b > 1

PD Games

PD1 0.2061

PD2 0.0797

APD3 0.3116

SH Games

SH1 0.0878

SH2 0.0260

ASH3 0.1040

BoS Games

BoS1 0.1933

ABoS2 0.2407

Notes: The level of statistical significance α is fixed at 5%.

6 Concluding Remarks

In the proof-of-concept application, we consider one-state and two-state machines,

and use asymptotic theory in the machine game to derive long-term predictions in

payoff variations of the Prisoner’s Dilemma, Stag Hunt and Battle of the Sexes. Fur-

thermore, we conduct experiments with a high continuation probability and contrast

the theoretical behavior with the empirical one. We find that the proposed theoret-

ical framework does fairly well overall in delivering the experimental behavior. We

discuss next some of the key findings of our study. Wherever possible, we also relate

our findings to those in relevant studies.

We start off with a discussion about the machines (strategies) inferred in the PD

games. As mentioned earlier, there exists a recent literature that applies strategy

elicitation directly to infer subjects’ strategies in the PD games. Though the con-

tinuation probability is different in these studies from ours, the PD payoff matrices
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used are identical.37 Dal Bó and Fréchette (2019) find that subjects choose common

strategies, such as ‘Tit-For-Tat,’ ‘Grim-Trigger’ and ‘Always Defect.’ Romero and

Rosokha (2018) corroborate the findings of Dal Bó and Fréchette (2019). In Romero

and Rosokha (2023), the authors find that even though many subjects do use mixed

strategies in the beginning of the PD game, strategies tend to become less mixed over

time, and move towards three focal pure-strategies: ‘Tit-For-Tat,’ ‘Grim-Trigger’ and

‘Always Defect.’ We reach similar conclusions. Figure 7 shows that predicted ‘Grim-

Trigger’ and ‘Quick A, then B’ (i.e. ‘Always Defect’) explain a very high percentage

of the frequent patterns mined in two of the three payoff variations in PD games and

a lower percentage of frequent patterns in the third payoff variation.

We make two additional remarks. First, in the PD games, we do find machines

with defecting absorbing states. This corroborates existing literature. Specifically,

Dal Bó and Fréchette (2011) provide experimental evidence to suggest that even

in treatments where cooperation can be supported in equilibrium (like our selected

variations), the level of cooperation may remain at low levels even after significant

experience is obtained. The authors conclude that “these results cast doubt on the

common assumption that agents will make the most of the opportunity to cooperate

whenever it is possible to do so in equilibrium” (p. 412). Second, Blonski, Ockenfels,

and Spagnolo (2011) find that in PD games, the mean value of cooperation in other

experimental studies (see their Table 6) is 0.43 if δ∗ < δ, which is comparable to our

mean value of cooperation in the three variations of 0.49.

In the SH games, a few of the predicted machines (e.g. ‘Tit-For-Tat,’ and ‘BA

Triggers A’) explain more than 60% of the frequent patterns mined in the payoff

variations. Importantly, we find that people do not necessarily coordinate on the

payoff-dominant equilibrium, which corroborates the findings in Dal Bó, Fréchette,

and Kim (2021). More specifically, in SH1, a large number of pairs end up playing

the risk-dominant equilibrium. The fact that payoff dominance is not used by these

pairs as an equilibrium selection criterion adds to the existing evidence suggesting that

strategic uncertainty is important in coordination games. Though our payoff matrices

are directly taken from Battalio, Samuelson, and Van Huyck (2001), the notable

differences in their matching protocol and horizon with ours does not allow us to make

any head-on comparisons between the two studies.38 Yet we still find that, similar to

37Dal Bó and Fréchette (2019) use the same symmetric PD payoff matrices we use here (i.e. PD1
and PD2) with δ = 0.5, 0.75, 0.9. Romero and Rosokha (2018, 2023) also use PD1 with δ = 0.95.

38Battalio, Samuelson, and Van Huyck (2001) use a random matching protocol with 75 periods of
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Battalio, Samuelson, and Van Huyck (2001), the risk-dominant equilibrium is more

likely to emerge the larger is the optimization premium. Finally, we do not find any

evidence of the predicted alternating sequence between the payoff-dominant and risk-

dominant equilibria in the SH games. Clearly, this is an unwarranted prediction that

is neither supported in the experimental data here nor, to the best of our knowledge,

in the existing literature.39

In the BoS games, predictability is compromized as almost all machines can be

supported in equilibrium. Nevertheless, all predicted machines find support in the

data. Specifically, as shown in Figure 7, all predicted machines can explain at least

30% of the frequent patterns mined in the two payoff variations of the BoS games.

Furthermore, given that the BoS payoff matrices are taken from Arifovic and Ledyard

(2018), despite their experimental games being finitely repeated, we can still compare

(somewhat) our findings to theirs.40 Arifovic and Ledyard (2018) find that in the

symmetric game, 40% of the pairs alternate between the two pure-strategy Nash

equilibria, 30% settle on one of the pure-strategy Nash equilibria, and the other 30%

are confused or contentious. We find that in the symmetric game, 43% of the pairs

alternated between the two pure-strategy Nash equilibria, 24% settled on one of the

two pure-strategy Nash equilibria, and 33% did not converge to a pattern. Therefore,

the percentages found in the BoS1 are quite similar to theirs. Finally, Arifovic and

Ledyard (2018) find that the asymmetry in the payoffs led to an increase in the

percentage of pairs ending at the pure-strategy Nash equilibrium, and a decrease in

the percentage of those alternating between the two pure-strategy Nash equilibria.

Both trends are observed in our data as well.

Concluding, we hope that in the near future, similar studies will be carried across

other infinitely-repeated games to confirm the ability of the framework to capture

well long-term behavior.

game play.
39Mathevet (2018) in his axiomatization of plays in repeated games provides a rather weak ax-

iom that eliminates the predicted alternating sequence in our SH games. Specifically, the efficient
simplicity axiom states that a pair would only complexify their convention, if in doing so, at least
one of the players earns more; clearly, in all versions of our SH games, the alternating sequences are
strictly Pareto inferior to the simpler payoff-dominant equilibrium.

40The length of game play in Arifovic and Ledyard (2018) is 40 periods and the matching protocol
is fixed. All this information is common knowledge.
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